Symmetries of nonlinear hyperbolic systems of the Toda chain type

被引:0
|
作者
V. V. Sokolov
S. Ya. Startsev
机构
[1] Landau Institute for Theoretical Physics,Institute of Mathematics and Computing Center
[2] RAS,undefined
来源
Theoretical and Mathematical Physics | 2008年 / 155卷
关键词
Liouville equation; Toda chain; integral; higher symmetry; hyperbolic system of partial differential equations; Noether theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We consider hyperbolic systems of equations that have full sets of integrals along both characteristics. The best known example of models of this type is given by two-dimensional open Toda chains. For systems that have integrals, we construct a differential operator that takes integrals into symmetries. For systems of the chosen type, this proves the existence of higher symmetries dependent on arbitrary functions.
引用
收藏
页码:802 / 811
页数:9
相关论文
共 50 条
  • [11] PERIODIC TODA CHAIN WITH AN INTEGRAL SOURCE
    Babajanov, B. A.
    Khasanov, A. B.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 184 (02) : 1114 - 1128
  • [12] Hyperbolic equations with third-order symmetries
    Meshkov, A. G.
    Sokolov, V. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 166 (01) : 43 - 57
  • [13] Hyperbolic equations with third-order symmetries
    A. G. Meshkov
    V. V. Sokolov
    Theoretical and Mathematical Physics, 2011, 166 : 43 - 57
  • [14] Toda chain, Stieltjes function, and orthogonal polynomials
    F. Peherstorfer
    V. P. Spiridonov
    A. S. Zhedanov
    Theoretical and Mathematical Physics, 2007, 151 : 505 - 528
  • [15] Integrability conditions for an analogue of the relativistic Toda chain
    Yamilov, R. I.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (01) : 492 - 504
  • [16] Exact solution of the relativistic quantum Toda chain
    Zhang, Xin
    Cao, Junpeng
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (12)
  • [17] Toda chain, Stieltjes function, and orthogonal polynomials
    Peherstorfer, F.
    Spiridonov, V. P.
    Zhedanov, A. S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (01) : 505 - 528
  • [18] Integrability conditions for an analogue of the relativistic Toda chain
    R. I. Yamilov
    Theoretical and Mathematical Physics, 2007, 151 : 492 - 504
  • [19] Generalized Gibbs Ensembles of the Classical Toda Chain
    Herbert Spohn
    Journal of Statistical Physics, 2020, 180 : 4 - 22
  • [20] Generalized Gibbs Ensembles of the Classical Toda Chain
    Spohn, Herbert
    JOURNAL OF STATISTICAL PHYSICS, 2020, 180 (1-6) : 4 - 22