Existence of infinitely many solutions for fractional p-Laplacian Schrödinger–Kirchhoff type equations with sign-changing potential

被引:0
作者
Youpei Zhang
Xianhua Tang
Jian Zhang
机构
[1] Central South University,School of Mathematics and Statistics
[2] Hunan University of Commerce,School of Mathematics and Statistics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2019年 / 113卷
关键词
Fractional ; -Laplacian; Multiple solutions; Schrödinger–Kirchhoff type problem; Sign-changing potential; Primary 35J60; Secondary 35J20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the existence of infinitely many solutions for the following fractional p-Laplacian equations of Schrödinger–Kirchhoff type a+b∬R2N|u(x)-u(y)|p|x-y|N+psdxdyp-1(-Δ)psu+V(x)|u|p-2u=f(x,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( a+b\iint _{{{\mathbb {R}}}^{2N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\right) ^{p-1} (-\Delta )^s_p u+V(x)|u|^{p-2}u=f(x,u) \end{aligned}$$\end{document}in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^N$$\end{document}, where 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, 2≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le p<\infty $$\end{document}, a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b>0$$\end{document} are constants. Under some appropriate assumptions on V and f, we prove that the above problem possesses multiple solutions by utilizing some new tricks. Furthermore, our assumptions are suitable and different from those studied previously.
引用
收藏
页码:569 / 586
页数:17
相关论文
共 100 条
[1]  
Franzina G(2014)Fractional Riv. Mat. Univ. Parma 5 315-328
[2]  
Palatucci G(2016)-eigenvalues Adv. Calc. Var. 9 101-125
[3]  
Iannizzotto A(2014)Existence results for fractional Asymptot. Anal. 88 233-245
[4]  
Liu S(2014)-Laplacian problems via Morse theory Calc. Var. Partial. Differ. Equ. 49 795-826
[5]  
Perera K(2004)Weyl-type laws for fractional Not. Am. Math. Soc. 51 1336-1347
[6]  
Squassina M(2012)-eigenvalue problems Nonlinear Partial Differ. Equ. Abel Symp. 7 37-52
[7]  
Iannizzotto A(2007)Fractional eigenvalues Commun. Partial Differ. Equ. 32 1245-1260
[8]  
Squassina M(2011)Lévy processes-from probability to finance quantum groups Calc. Var. Partial. Differ. Equ. 41 203-240
[9]  
Lindgren E(2004)Nonlocal equations, drifts and games J. Phys. A 37 161-208
[10]  
Lindqvist P(2013)An extension problem related to the fractional Laplacian J. Differ. Equ. 255 2340-2362