Syzygies and tensor product of modules

被引:0
作者
Olgur Celikbas
Greg Piepmeyer
机构
[1] University of Missouri,Department of Mathematics, 323 Mathematical Sciences Bldg
[2] University of Missouri,Department of Statistics, 146 Middlebush Hall
来源
Mathematische Zeitschrift | 2014年 / 276卷
关键词
Derived depth formula; Complex; Complexity; Complete intersection dimension; Serre’s condition; Tensor product; Torsion; Tor-rigidity; New Intersection Theorem; 13C12; 13C13;
D O I
暂无
中图分类号
学科分类号
摘要
We give an application of the New Intersection Theorem and prove the following: let R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} be a local complete intersection ring of codimension c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} and let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} be nonzero finitely generated R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-modules. Assume n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} is a nonnegative integer and that the tensor product M⊗RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\otimes _{R}N$$\end{document} is an (n+c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+c)$$\end{document}th syzygy of some finitely generated R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-module. If Tor>0R(M,N)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{Tor}}}^{R}_{>0}(M,N)=0$$\end{document}, then both M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} are n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}th syzygies of some finitely generated R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-modules.
引用
收藏
页码:457 / 468
页数:11
相关论文
共 25 条
[1]  
Auslander M(1961)Modules over unramified regular local rings Ill. J. Math. 5 631-647
[2]  
Avramov LL(1989)Modules of finite virtual projective dimension Invent. Math. 96 71-101
[3]  
Avramov LL(1998)Cohomology operators defined by a deformation J. Algebra 204 684-710
[4]  
Sun L-C(2011)Vanishing of Tor over complete intersections J. Commut. Algebra 3 169-206
[5]  
Celikbas O(1980)On the deviations of a local ring Math. Scand. 47 5-20
[6]  
Gulliksen TH(1994)Tensor products of modules and the rigidity of Tor Math. Ann. 299 449-476
[7]  
Huneke C(1994)Correction to tensor products of modules and the rigidity of Tor Math. Ann. 299 449-476
[8]  
Wiegand R(1997)Tensor products of modules, rigidity and local cohomology Math. Scand. 81 161-183
[9]  
Huneke C(1999)Depth for complexes, and intersection theorems Math. Z. 230 545-567
[10]  
Wiegand R(1999)Complexity and Tor on a complete intersection J. Algebra 211 578-598