Three previously identified grain yield quantitative trait loci (QTL) on chromosomes 2S(2HS), 3C(3HC) and 5L(1HL), designated QTL-2S, QTL-3 and QTL-5L, respectively, were evaluated for their potential to increase yields of high-quality malting barley without disturbing their favorable malting quality profile. QTL mapping of yield related traits was performed and near-isogenic lines (NILs) were developed. QTL for plant height, head shattering, seed weight and number of rachis nodes/spike were detected in the QTL-3 region. NILs developed by introgressing QTL-3 from the high-yielding cv. Steptoe to the superior malting quality, moderate-yielding cv. Morex acquired reduced height, lodging and head shattering features of Steptoe without major changes in malting quality. The yield of NILs, measured by minimizing the losses due to lodging and head shattering, did not exceed that of Morex. Steptoe NILs, with the Morex QTL-2S region, flowered 10 days later than Steptoe but the grain yield was not changed. None of the 3 QTL studied altered the measured yield of the recipient genotype, per se, although QTL 2S and QTL-3 affected yield-related traits. We conclude that these yield QTL must interact with other genes for full expression. Alternatively, they affect the harvestable yield through reduced lodging, head shattering, and/or altered flowering time.