A Kato-Type Criterion for the Inviscid Limit of the Compressible Navier–Stokes System

被引:0
作者
Yonghui Zou
Xin Xu
机构
[1] Ocean University of China,School of Mathematical Sciences
来源
Journal of Mathematical Fluid Mechanics | 2023年 / 25卷
关键词
Inviscid limit; Compressible Navier–Stokes equations; Boundary layer; 35Q30; 35Q35; 76N20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the inviscid limit of the compressible Navier–Stokes system with no-slip boundary condition in a smooth bounded domain Ω⊆R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subseteq {\mathbb {R}}^{2}$$\end{document}. Inspired by the work of (Sueur in J Math Fluid Mech 16:163–178, 2014; Constantin et al. in Proc Am Math Soc 143:3075–3090, 2015), we obtain a sufficient condition for the convergence of the solution of the compressible Navier–Stokes equations to the solution of the compressible Euler equations in the energy space L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}(\Omega )$$\end{document} uniformly in time.
引用
收藏
相关论文
共 49 条
[1]  
Alexandre R(2015)Well-posedness of the Prandtl equation in Sobolev spaces J. Am. Math. Soc. 28 745-784
[2]  
Wang Y(2015)On the inviscid limit of the Navier–Stokes equations Proc. Am. Math. Soc. 143 3075-3090
[3]  
Xu C(2017)Remarks on the inviscid limit for the Navier–Stokes equations for uniformly bounded velocity fields SIAM J. Math. Anal. 49 1932-1946
[4]  
Yang T(1979)The initial-boundary value problem for subsonic fluid motion Commun. Pure Appl. Math. 32 1-19
[5]  
Constantin P(2001)On the existence of globally defined weak solutions to the Navier–Stokes equations J. Math. Fluid Mech. 3 358-392
[6]  
Kukavica I(2012)Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier–Stokes system J. Math. Fluid Mech. 14 717-730
[7]  
Vicol V(2016)Vanishing dissipation limit for the Navier–Stokes–Fourier system Commun. Math. Sci. 14 1535-1551
[8]  
Constantin P(2017)The van Dommelen and Shen singularity in the Prandtl equations Adv. Math. 307 288-311
[9]  
Elgindi T(2017)A well-posedness theory for the Prandtl equations in three space variables Adv. Math. 308 1074-1126
[10]  
Ignatova M(2015)Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods Commun. Pure Appl. Math. 68 1683-1741