A data-directed paradigm for BSM searches: the bump-hunting example

被引:0
作者
Sergey Volkovich
Federico De Vito Halevy
Shikma Bressler
机构
[1] Weizmann Institute of Science,Department of Particle Physics and Astrophysics
来源
The European Physical Journal C | 2022年 / 82卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We propose a data-directed paradigm (DDP) to search for new physics. Focusing on the data without using simulations, exclusive selections which exhibit significant deviations from known properties of the standard model can be identified efficiently and marked for further study. Different properties can be exploited with the DDP. Here, the paradigm is demonstrated by combining the promising potential of neural networks (NN) with the common bump-hunting approach. Using the NN, the resource-consuming tasks of background and systematic uncertainty estimation are avoided, allowing rapid testing of many final states with only a minor degradation in the sensitivity to bumps relative to standard analysis methods.
引用
收藏
相关论文
共 17 条
  • [1] Weinberg S(2018)undefined Phys. Rev. Lett. 121 015025-undefined
  • [2] Bressler S(2014)undefined Phys. Rev. D 90 1554-undefined
  • [3] Dery A(2011)undefined Eur. Phys. J. C 71 075021-undefined
  • [4] Efrati A(2020)undefined Phys. Rev. D 101 014038-undefined
  • [5] Cowan G(2019)undefined Phys. Rev. D 99 241803-undefined
  • [6] Cranmer K(2018)undefined Phys. Rev. Lett. 121 undefined-undefined
  • [7] Gross E(undefined)undefined undefined undefined undefined-undefined
  • [8] Vitells O(undefined)undefined undefined undefined undefined-undefined
  • [9] Farina M(undefined)undefined undefined undefined undefined-undefined
  • [10] Nakai Y(undefined)undefined undefined undefined undefined-undefined