Model-based clustering and classification with non-normal mixture distributions

被引:0
作者
Sharon X. Lee
Geoffrey J. McLachlan
机构
[1] University of Queensland,Department of Mathematics
来源
Statistical Methods & Applications | 2013年 / 22卷
关键词
Mixture models; Skew distributions; Multivariate skew normal distribution; Multivariate skew ; -distribution; EM algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Non-normal mixture distributions have received increasing attention in recent years. Finite mixtures of multivariate skew-symmetric distributions, in particular, the skew normal and skew t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-mixture models, are emerging as promising extensions to the traditional normal and t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-mixture models. Most of these parametric families of skew distributions are closely related, and can be classified into four forms under a recently proposed scheme, namely, the restricted, unrestricted, extended, and generalised forms. In this paper, we consider some of these existing proposals of multivariate non-normal mixture models and illustrate their practical use in several real applications. We first discuss the characterizations along with a brief account of some distributions belonging to the above classification scheme, then references for software implementation of EM-type algorithms for the estimation of the model parameters are given. We then compare the relative performance of restricted and unrestricted skew mixture models in clustering, discriminant analysis, and density estimation on six real datasets from flow cytometry, finance, and image analysis. We also compare the performance of mixtures of skew normal and t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-component distributions with other non-normal component distributions, including mixtures with multivariate normal-inverse-Gaussian distributions, shifted asymmetric Laplace distributions and generalized hyperbolic distributions.
引用
收藏
页码:427 / 454
页数:27
相关论文
共 131 条
  • [1] Aghaeepour N(2013)Critical assessment of automated flow cytometry data analysis techniques Nat Methods 10 228-238
  • [2] Finak G(1968)Financial ratios, discriminant analysis and the prediction of corporate bankruptcy J Finance 23 589-609
  • [3] Consortium TF(2006)On the unification of families of skew-normal distributions Scand J Stat 33 561-574
  • [4] Consortium TD(2005)On fundamental skew distribtuions J Multivar Anal 96 93-116
  • [5] Hoos H(2010)Multivariate extended skew- Metron—special issue on ‘Skew-symmetric and flexible distributions’ 68 201-234
  • [6] Mosmann TR(2010) distributions and related families Chil J Stat 1 17-33
  • [7] Brinkman R(2002)Multivariate unified skew-elliptical distributions Stat Probab Lett 58 111-121
  • [8] Gottardo R(2006)Definition and probabilistic properties of skew-distributions Can J Stat 34 581-601
  • [9] Scheuermann RH(1993)A unified view on skewed distributions arising from selections Psychometrika 58 471-488
  • [10] Altman EI(1985)The nontruncated marginal of a truncated bivariate normal distribution Scand J Stat 12 171-178