Analysis and hyper-chaos control of a new 4-D hyper-chaotic system by using optimal and adaptive control design

被引:1
作者
Khan A. [1 ]
Tyagi A. [1 ]
机构
[1] Department of Mathematics, Jamia Millia Islamia, New Delhi
关键词
Adaptive control; Bifurcation; Hyper-chaos; Lyapunov stability theory; Optimal control; Poincaré; maps; Pontryagin minimum principle;
D O I
10.1007/s40435-016-0265-7
中图分类号
学科分类号
摘要
In this manuscript,a new 4-D hyper-chaotic system is proposed. Followed by optimal and adaptive control theory. Firstly, we analyze the chaotic properties of new 4-D hyper-chaotic system such as dissipation, equilibrium, stability, time series, phase portraits, Lyapunov exponents, bifurcation and Poincaré maps. Next, we study the optimal control for the new 4-D hyper-chaotic system which is based on the Pontryagin minimum principle. Further, Lyapunov stability theory is used for adaptive control approach and a parameter estimation update law is given for the new 4-D hyper-chaotic system with completely unknown parameters. Finally, to demonstrate the effectiveness of the proposed method we use MATLAB bvp4c and ode45 for numerical simulation which illustrate the stabilized behaviour of states and control functions for different equilibrium points. The plots displaying the time history of states functions and the parameters estimates have been drawn for the different values of equilibrium points. © 2016, Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:1147 / 1155
页数:8
相关论文
共 50 条
[21]   A 4-D chaotic hyperjerk system with a hidden attractor, adaptive backstepping control and circuit design [J].
Vaidyanathan, Sundarapandian ;
Jafari, Sajad ;
Viet-Thanh Pham ;
Azar, Ahmad Taher ;
Alsaadi, Fawaz E. .
ARCHIVES OF CONTROL SCIENCES, 2018, 28 (02) :239-254
[22]   Qualitative analysis of a new 6D hyper-chaotic system via bifurcation, the Poincare notion, and its circuit implementation [J].
Khattar, D. ;
Agrawal, N. ;
Sirohi, M. .
INDIAN JOURNAL OF PHYSICS, 2024, 98 (01) :259-273
[23]   Qualitative analysis of a new 6D hyper-chaotic system via bifurcation, the Poincaré notion, and its circuit implementation [J].
Dinesh Khattar ;
Neha Agrawal ;
Mukul Sirohi .
Indian Journal of Physics, 2024, 98 :259-273
[24]   Hyper-chaos control synchronization for a fractional-order Cattaneo-Christov heat flux hybrid model with an optimal control approach [J].
Surendar, R. ;
Muthtamilselvan, M. ;
Al-Mdallal, Qasem M. .
NONLINEAR DYNAMICS, 2024, 112 (10) :8617-8635
[25]   Hyper-chaos control synchronization for a fractional-order Cattaneo-Christov heat flux hybrid model with an optimal control approach [J].
R. Surendar ;
M. Muthtamilselvan ;
Qasem M. Al-Mdallal .
Nonlinear Dynamics, 2024, 112 :8617-8635
[26]   Chaos control of a bounded 4D chaotic system [J].
Hassan Saberi Nik ;
Mahin Golchaman .
Neural Computing and Applications, 2014, 25 :683-692
[27]   Hyper-chaotic analysis and adaptive multi-switching synchronization of a novel asymmetric non-linear dynamical system [J].
Khan A. ;
Bhat M.A. .
International Journal of Dynamics and Control, 2017, 5 (4) :1211-1221
[28]   Parameter Estimation and Synchronization of Vaidyanathan Hyperjerk Hyper-Chaotic System via Integral Sliding Mode Control [J].
Siddique, Nazam ;
Rehman, Fazal Ur ;
Wasif, Muhammad ;
Abbasi, Waseem ;
Khan, Qaiser .
2018 AEIT INTERNATIONAL ANNUAL CONFERENCE, 2018,
[29]   Identification of 4D Lu hyper-chaotic system using identical systems synchronization and fractional adaptation law [J].
Abedini, Mohammad ;
Gomroki, Mehdi ;
Salarieh, Hassan ;
Meghdari, Ali .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (19-20) :4652-4661
[30]   Predefined-time sliding mode filtering control of memristor-based Bao hyper-chaotic system [J].
Zhu, Shixiang ;
Li, Rongfeng ;
Feng, Yuming ;
Yan, Dongfang ;
Onasanya, Babatunde Oluwaseun .
JOURNAL OF VIBRATION AND CONTROL, 2024,