On wedge extendability of CR-meromorphic functions

被引:0
|
作者
J. Merker
E. Porten
机构
[1] LATP,
[2] UMR 6632,undefined
[3] Centre de Mathématiques et d'Informatique,undefined
[4] 39 rue Joliot-Curie,undefined
[5] 13453 Marseille Cedex 13,undefined
[6] France (e-mail: merker@cmi.univ-mrs.fr) ,undefined
[7] Humboldt-Universität zu Berlin,undefined
[8] Mathematisch-Naturwissenschaftenschaftliche Fakultät II,undefined
[9] Institut für Mathematik,undefined
[10] Rudower Chaussee 25,undefined
[11] 12489 Berlin,undefined
[12] Germany (e-mail: egmont@mathematik.hu-berlin.de) ,undefined
来源
Mathematische Zeitschrift | 2002年 / 241卷
关键词
Holomorphic Function; Generic Manifold; Hausdorff Volume; Wedge Extendability;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we consider metrically thin singularities E of the solutions of the tangential Cauchy-Riemann operators on a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{ C}^{2,\alpha}$\end{document}-smooth embedded Cauchy-Riemann generic manifold M (CR functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M\backslash E$\end{document}) and more generally, we consider holomorphic functions defined in wedgelike domains attached to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M\backslash E$\end{document}. Our main result establishes the wedge- and the L1-removability of E under the hypothesis that the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\dim M-2)$\end{document}-dimensional Hausdorff volume of E is zero and that M and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M\backslash E$\end{document} are globally minimal. As an application, we deduce that there exists a wedgelike domain attached to an everywhere locally minimal M to which every CR-meromorphic function on M extends meromorphically.
引用
收藏
页码:485 / 512
页数:27
相关论文
共 23 条
  • [1] Defective functions of meromorphic functions in the unit disc
    Ciechanowicz, Ewa
    JOURNAL OF APPLIED ANALYSIS, 2016, 22 (01) : 15 - 26
  • [2] Normal families and shared functions of meromorphic functions
    Jun-Fan Chen
    Ming-Liang Fang
    Israel Journal of Mathematics, 2010, 180 : 129 - 142
  • [3] NEW ESTIMATES FOR MEROMORPHIC FUNCTIONS
    Ornek, Bulent Nafi
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2021, 109 (123): : 153 - 162
  • [4] Normal families of meromorphic functions sharing values or functions
    Jiang, Yunbo
    Gao, Zongsheng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [5] Normal families of meromorphic functions sharing values or functions
    Yunbo Jiang
    Zongsheng Gao
    Journal of Inequalities and Applications, 2011
  • [6] Composite meromorphic functions and normal families
    Wenjun Yuan
    Bing Xiao
    Qifeng Wu
    Archiv der Mathematik, 2011, 96 : 435 - 444
  • [7] Composite meromorphic functions and normal families
    Yuan, Wenjun
    Xiao, Bing
    Wu, Qifeng
    ARCHIV DER MATHEMATIK, 2011, 96 (05) : 435 - 444
  • [8] Quasinormality and meromorphic functions with multiple zeros
    Shahar Nevo
    Xuecheng Pang
    Lawrence Zalcman
    Journal d'Analyse Mathématique, 2007, 101 : 1 - 23
  • [10] Behavior of Meromorphic Functions at the Boundary of the Unit Disc
    Ornek, Bulent Nafi
    FILOMAT, 2017, 31 (11) : 3443 - 3452