Inverse problems of deformation of nonlinear viscoelastic bodies

被引:1
|
作者
I. Yu. Tsvelodub
机构
关键词
Residual Stress; Inverse Problem; External Load; Region Versus; Elastic Problem;
D O I
10.1007/BF02467848
中图分类号
学科分类号
摘要
引用
收藏
页码:453 / 463
页数:10
相关论文
共 50 条
  • [21] Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations
    K. R. Aida-Zade
    S. Z. Kuliev
    Computational Mathematics and Mathematical Physics, 2011, 51 : 803 - 815
  • [22] Inverse problems for nonlinear Navier-Stokes-Voigt system with memory
    Khompysh, Kh.
    Shakir, A. G.
    Kabidoldanova, A. A.
    CHAOS SOLITONS & FRACTALS, 2023, 177
  • [23] Numerical solution of nonlinear inverse coefficient problems for ordinary differential equations
    Aida-Zade, K. R.
    Kuliev, S. Z.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (05) : 803 - 815
  • [24] Efficient solution of nonlinear, underdetermined inverse problems with a generalized PDE model
    Cardiff, Michael
    Kitanidis, Peter K.
    COMPUTERS & GEOSCIENCES, 2008, 34 (11) : 1480 - 1491
  • [25] Direct and inverse problems for nonlinear one-dimensional poroelasticity equations
    Imomnazarov, Kh. Kh.
    Imomnazarov, Sh. Kh.
    Korobov, P. V.
    Kholmurodov, A. E.
    DOKLADY MATHEMATICS, 2014, 89 (02) : 250 - 252
  • [26] One-phase inverse Stefan problems with unknown nonlinear sources
    N. L. Gol’dman
    Differential Equations, 2013, 49 : 680 - 687
  • [27] Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems*
    Migorski, Stanislaw
    Khan, Akhtar A.
    Zeng, Shengda
    INVERSE PROBLEMS, 2020, 36 (02)
  • [28] Direct and inverse problems for nonlinear one-dimensional poroelasticity equations
    Kh. Kh. Imomnazarov
    Sh. Kh. Imomnazarov
    P. V. Korobov
    A. E. Kholmurodov
    Doklady Mathematics, 2014, 89 : 250 - 252
  • [29] Physically Nonlinear Three-Dimensional Problems on the Elastic Equilibrium of Deformable Bodies
    Yu. N. Nemish
    International Applied Mechanics, 2000, 36 : 1150 - 1180
  • [30] The neural network approximation method for solving multidimensional nonlinear inverse problems of geophysics
    M. I. Shimelevich
    E. A. Obornev
    I. E. Obornev
    E. A. Rodionov
    Izvestiya, Physics of the Solid Earth, 2017, 53 : 588 - 597