Instability of the Maxwell’s Pendulum Motion

被引:0
|
作者
G. M. Rozenblat
机构
[1] Moscow State Automobile and Road Technical University,
[2] Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences,undefined
来源
Mechanics of Solids | 2018年 / 53卷
关键词
Maxwell’s pendulum; instability; impact; incorrectness in the sense of Hadamard;
D O I
暂无
中图分类号
学科分类号
摘要
The article deals with the problem of the vertical position stability of the Maxwell’s pendulum performing the periodic upward and downward movements. It is shown that for any values of the pendulum parameters, its vertical position is unstable in the sense that in the system there are oscillations of the thread about the vertical of final amplitude for arbitrarily small initial deviations. In addition, it has been found that no impact phenomena occur when the Maxwell’s pendulum moves and the model of this pendulum is incorrect in the sense of Hadamard when using the parameters frequently adopted in the literature.
引用
收藏
页码:527 / 534
页数:7
相关论文
共 50 条
  • [41] CHAOTIC MOTION OF A PENDULUM WITH OSCILLATORY FORCING
    HASTINGS, SP
    MCLEOD, JB
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (06): : 563 - 572
  • [42] A SIMPLE DESCRIPTION OF MOTION OF A SPHERICAL PENDULUM
    JOHANSEN, KF
    KANE, TR
    MECHANICAL ENGINEERING, 1969, 91 (11) : 74 - &
  • [43] Motion analysis of magnetic spring pendulum
    Yong Meng
    Nonlinear Dynamics, 2023, 111 : 6111 - 6128
  • [44] PROBLEM OF GRAVIMETER PENDULUM MOTION STABILITY
    KUZIVANO.VA
    SMIRNOV, YN
    DOKLADY AKADEMII NAUK SSSR, 1974, 217 (03): : 558 - 560
  • [45] Pendulum motion in airborne HEM systems
    Davis, Aaron C.
    Macnae, James
    Robb, Terry
    EXPLORATION GEOPHYSICS, 2006, 37 (04) : 355 - 362
  • [46] Experimental characterisation of the motion of an inverted pendulum
    Gomez-Tejedor, J. A.
    Mollar, M.
    Monsoriu, A.
    1ST INTERNATIONAL CONFERENCE ON HIGHER EDUCATION ADVANCES (HEAD'15), 2015, : 588 - 592
  • [47] Chaotic Motion of a Nonhomogeneous Torsional Pendulum
    Yeh, J.-P.
    International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 7 (03):
  • [48] On the irregularities of motion of the Foucault pendulum.
    Longden, AC
    PHYSICAL REVIEW, 1919, 13 (04): : 241 - 258
  • [49] Pendulum in motion: The Forest Service and politics
    Hays, H
    JOURNAL OF FORESTRY, 2001, 99 (09) : 48 - 48
  • [50] New Vertically Planed Pendulum Motion
    Ismail, A. I.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020