Carotenoid dark state to chlorophyll energy transfer in isolated light-harvesting complexes CP24 and CP29

被引:0
作者
Daniel A. Gacek
Christoph-Peter Holleboom
Pen-Nan Liao
Marco Negretti
Roberta Croce
Peter Jomo Walla
机构
[1] Technische Universität Braunschweig,Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry
[2] Vrije Universiteit Amsterdam,Department of Physics and Astronomy and LaserLab Amsterdam, Faculty of Science
来源
Photosynthesis Research | 2020年 / 143卷
关键词
CP24; CP29; Electronic coupling; Carotenoids; Chlorophylls; Photosynthetic regulation;
D O I
暂无
中图分类号
学科分类号
摘要
We present a comparison of the energy transfer between carotenoid dark states and chlorophylls for the minor complexes CP24 and CP29. To elucidate the potential involvement of certain carotenoid–chlorophyll coupling sites in fluorescence quenching of distinct complexes, varying carotenoid compositions and mutants lacking chlorophylls at specific binding sites were examined. Energy transfers between carotenoid dark states and chlorophylls were compared using the coupling parameter, ΦCouplingCar S1-Chl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{Coupling}}^{{{\text{Car S}}_{ 1} {-}{\text{Chl}}}}$$\end{document}, which is calculated from the chlorophyll fluorescence observed after preferential carotenoid two-photon excitation. In CP24, artificial reconstitution with zeaxanthin leads to a significant reduction in the chlorophyll fluorescence quantum yield, ΦF1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{F1}}$$\end{document}, and a considerable increase in ΦCouplingCar S1-Chl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{Coupling}}^{{{\text{Car S}}_{ 1} {-}{\text{Chl}}}}$$\end{document}. Similar effects of zeaxanthin were also observed in certain samples of CP29. In CP29, also the replacement of violaxanthin by the sole presence of lutein results in a significant quenching and increased ΦCouplingCar S1-Chl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{Coupling}}^{{{\text{Car S}}_{ 1} {-}{\text{Chl}}}}$$\end{document}. In contrast, the replacement of violaxanthin by lutein in CP24 is not significantly increasing ΦCouplingCar S1-Chl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{Coupling}}^{{{\text{Car S}}_{ 1} {-}{\text{Chl}}}}$$\end{document}. In general, these findings provide evidence that modification of the electronic coupling between carotenoid dark states and chlorophylls by changing carotenoids at distinct sites can significantly influence the quenching of these minor proteins, particularly when zeaxanthin or lutein is used. The absence of Chl612 in CP24 and of Chl612 or Chl603 in CP29 has a considerably smaller effect on ΦF1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{{{\text{F}}1}}$$\end{document} and ΦCouplingCar S1-Chl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{Coupling}}^{{{\text{Car S}}_{ 1} {-}{\text{Chl}}}}$$\end{document} than the influence of some carotenoids reported above. However, in CP29 our results indicate slightly dequenching and decreased ΦCouplingCar S1-Chl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{Coupling}}^{{{\text{Car S}}_{ 1} {-}{\text{Chl}}}}$$\end{document} when these chlorophylls are absent. This might indicate that both, Chl612 and Chl603 are involved in carotenoid-dependent quenching in isolated CP29.
引用
收藏
页码:19 / 30
页数:11
相关论文
共 15 条
  • [1] Carotenoid dark state to chlorophyll energy transfer in isolated light-harvesting complexes CP24 and CP29
    Gacek, Daniel A.
    Holleboom, Christoph-Peter
    Liao, Pen-Nan
    Negretti, Marco
    Croce, Roberta
    Walla, Peter Jomo
    PHOTOSYNTHESIS RESEARCH, 2020, 143 (01) : 19 - 30
  • [2] Carotenoid–chlorophyll coupling and fluorescence quenching in aggregated minor PSII proteins CP24 and CP29
    Christoph-Peter Holleboom
    Daniel Alexander Gacek
    Pen-Nan Liao
    Marco Negretti
    Roberta Croce
    Peter Jomo Walla
    Photosynthesis Research, 2015, 124 : 171 - 180
  • [3] Carotenoid-chlorophyll coupling and fluorescence quenching in aggregated minor PSII proteins CP24 and CP29
    Holleboom, Christoph-Peter
    Gacek, Daniel Alexander
    Liao, Pen-Nan
    Negretti, Marco
    Croce, Roberta
    Walla, Peter Jomo
    PHOTOSYNTHESIS RESEARCH, 2015, 124 (02) : 171 - 180
  • [4] Properties of zeaxanthin and its radical cation bound to the minor light-harvesting complexes CP24, CP26 and CP29
    Amarie, Sergiu
    Wilk, Laura
    Barros, Tiago
    Kuehlbrandt, Werner
    Dreuw, Andreas
    Wachtveitl, Josef
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2009, 1787 (06): : 747 - 752
  • [5] Site-Directed Mutagenesis of the Chlorophyll-Binding Sites Modulates Excited-State Lifetime and Chlorophyll-Xanthophyll Energy Transfer in the Monomeric Light-Harvesting Complex CP29
    Sardar, Samim
    Caferri, Roberto
    Camargo, Franco V. A.
    Capaldi, Stefano
    Ghezzi, Alberto
    Dall'Osto, Luca
    D'Andrea, Cosimo
    Cerullo, Giulio
    Bassi, Roberto
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (11) : 3149 - 3158
  • [6] Molecular mechanisms of light harvesting in the minor antenna CP29 in near-native membrane lipidic environment
    Sardar, Samim
    Caferri, Roberto
    Camargo, Franco V. A.
    Pamos Serrano, Javier
    Ghezzi, Alberto
    Capaldi, Stefano
    Dall'Osto, Luca
    Bassi, Roberto
    D'Andrea, Cosimo
    Cerullo, Giulio
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (20)
  • [7] Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum
    Nikki M. Magdaong
    Amy M. LaFountain
    Kirsty Hacking
    Dariusz M. Niedzwiedzki
    George N. Gibson
    Richard J. Cogdell
    Harry A. Frank
    Photosynthesis Research, 2016, 127 : 171 - 187
  • [8] Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum
    Magdaong, Nikki M.
    LaFountain, Amy M.
    Hacking, Kirsty
    Niedzwiedzki, Dariusz M.
    Gibson, George N.
    Cogdell, Richard J.
    Frank, Harry A.
    PHOTOSYNTHESIS RESEARCH, 2016, 127 (02) : 171 - 187
  • [9] Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex
    Bina, David
    Durchan, Milan
    Kuznetsova, Valentyna
    Vacha, Frantisek
    Litvin, Radek
    Polivka, Tomas
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2019, 1860 (02): : 111 - 120
  • [10] Femtosecond pump probe spectroscopy for the study of energy transfer of light-harvesting complexes from extractions of spinach leaves
    Ombinda-Lemboumba, S.
    du Plessis, A.
    Sparrow, R. W.
    Molukanele, P.
    Botha, L. R.
    Rohwer, E. G.
    Steenkamp, C. M.
    van Rensburg, L.
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2009, 105 (9-10) : 376 - 386