A Robust Solver for a Mixed Finite Element Method for the Cahn–Hilliard Equation

被引:0
作者
Susanne C. Brenner
Amanda E. Diegel
Li-Yeng Sung
机构
[1] Louisiana State University,Department of Mathematics and Center for Computation and Technology
来源
Journal of Scientific Computing | 2018年 / 77卷
关键词
Cahn–Hilliard equation; Convex splitting; Mixed finite element methods; MINRES; Block diagonal preconditioner; Multigrid;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a robust solver for a mixed finite element convex splitting scheme for the Cahn–Hilliard equation. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spacial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild.
引用
收藏
页码:1234 / 1249
页数:15
相关论文
共 100 条
[1]  
Alnæs MS(2015)The FEniCS project version 15 Arch. Numer. Soft. 3 9-23
[2]  
Blechta J(2013)Numerical and computational efficiency of solvers for two-phase problems Comput. Math. Appl. 65 301-314
[3]  
Hake J(2005)Finite element approximation of a phase field model for void electromigration SIAM J. Numer. Anal. 42 738-772
[4]  
Johansson A(2011)Preconditioning a class of fourth order problems by operator splitting Numer. Math. 118 197-228
[5]  
Kehlet B(2005)Numerical solution of saddle point problems Acta Numer. 14 1-137
[6]  
Logg A(2012)Efficient preconditioners for large scale binary Cahn–Hilliard models Comput. Methods Appl. Math. 12 1-22
[7]  
Richardson C(1961)On spinodal decomposition Acta Metall. 9 795-1862
[8]  
Ring J(1958)Free energy of a nonuniform system. I. Interfacial free energy J. Chem. Phys. 28 258-1362
[9]  
Rognes ME(2007)A nonstiff, adaptive mesh refinement-based method for the Cahn–Hilliard equation J. Comput. Phys. 225 1849-152
[10]  
Wells GN(2011)2D phase diagram for minimizers of a Cahn–Hilliard functional with long-range interactions SIAM J. Appl. Dyn. Sys. 10 1344-1897