Diffusion kinetics and spinodal decomposition in quasi-equilibrium solid solutions

被引:0
作者
M. A. Zakharov
机构
[1] Novgorod State University,
来源
Physics of the Solid State | 2000年 / 42卷
关键词
Spectroscopy; State Physics; Solid Solution; Lattice Model; Specific Volume;
D O I
暂无
中图分类号
学科分类号
摘要
A phenomenological theory of the transformation of multicomponent solid solutions with the hierarchy of atomic mobilities of the components has been developed within the local-equilibrium approximation. At the hydrodynamic stage, the evolution of these solutions is treated as a sequence of quasi-equilibrium states, for which only a part of conditions for the complete equilibrium are fulfilled. The equations describing the evolution of the distributions of “fast” components in the quasi-equilibrium solid solutions at arbitrary stages of the transformation are derived within the generalized lattice model accounting for the specific volumes of components by using the separation of “fast” and “slow” components of diffusion and the method of contracted descriptions. The conditions of the stability of quasi-equilibrium solutions against the spinodal decomposition are determined, and the equations for the metastability boundaries in these systems are obtained.
引用
收藏
页码:1270 / 1276
页数:6
相关论文
共 14 条
  • [1] Zakharov M. A.(1999)undefined Fiz. Tverd. Tela (S.-Peterburg) 41 60-undefined
  • [2] Zakharov M. A.(1999)undefined Fiz. Tverd. Tela (S.-Peterburg) 41 1609-undefined
  • [3] van Kampen N. G.(1985)undefined Phys. Rep. 124 69-undefined
  • [4] Janssen J. A. M.(1986)undefined Physica A (Amsterdam) 137 477-undefined
  • [5] Slezov V. V.(1987)undefined Usp. Fiz. Nauk 151 67-undefined
  • [6] Sagalovich V. V.(1996)undefined Phys. Status Solidi B 195 137-undefined
  • [7] Feldman E. P.(1998)undefined Notices of the AMS 45 9-undefined
  • [8] Stefanovich L. I.(1985)undefined Fiz. Met. Metalloved. 59 261-undefined
  • [9] Ni W.-M.(2000)undefined Zh. Fiz. Khim. 74 54-undefined
  • [10] Zakharov A. Yu.(1980)undefined Izv. Vyssh. Uchebn. Zaved., Fiz. 24 48-undefined