Characterization of a male sterile mutant from progeny of a transgenic plant containing a leaf senescence-inhibition gene in wheat

被引:0
|
作者
Ya-Jun Xi
Xue-Feng Ma
Huan Zhong
Shu-Dong Liu
Zhu-Lin Wang
Yang-Yang Song
Cheng-Hui Zhao
机构
[1] Northwest A and F University,College of Agriculture
[2] Ceres Inc.,undefined
来源
Euphytica | 2011年 / 177卷
关键词
Genetic transformation; Leaf senescence; Male sterility; Ms gene;
D O I
暂无
中图分类号
学科分类号
摘要
A male sterile plant of wheat (Triticum aestivum L.) segregated from progenies of a transgenic family containing the leaf senescence-inhibition gene PSAG12-IPT in the genetic background of ‘Xinong 1376’, a well adapted winter wheat cultivar. The male sterile plant (named TR1376A) showed no phenotypic changes, except for florets and male organs, compared to its male fertile sibling plants (named TR1376B). The glumes and florets of male sterile TR1376A plants widely opened whereas those of the fertile counterpart TR1376B were closed or opened only briefly at flowing. Anthers of TR1376A were slender and indehiscent, and failed to release pollen. Compared to TR1376B, TR1376A anthers contained greatly reduced amounts of pollen, which was inviable or weakly viable. Ultra-structure studies indicated that cells in the endothecium and middle layers of the anther wall were dissolved or poorly developed in the sterile anthers of TR1376A. Molecular studies showed that the male sterility of TR1376A was caused by a sequence deletion or mutation that occurred in the promoter region of the transgene. F1 hybrids of TR1376A and TR1376B gave 1:1 segregation of male fertility to sterility, indicating that the male sterility of TR1376A was heritable and controlled by a single dominant gene (named Ms1376). To date, only a few dominant nuclear male sterility genes have been characterized and one of them (Ms2) has been successfully used to improve wheat cultivars through recurrent breeding strategies. The discovery of the Ms1376 gene provides another dominant male sterile source for establishing recurrent breeding systems in wheat.
引用
收藏
页码:241 / 251
页数:10
相关论文
共 4 条
  • [1] Characterization of a male sterile mutant from progeny of a transgenic plant containing a leaf senescence-inhibition gene in wheat
    Xi, Ya-Jun
    Ma, Xue-Feng
    Zhong, Huan
    Liu, Shu-Dong
    Wang, Zhu-Lin
    Song, Yang-Yang
    Zhao, Cheng-Hui
    EUPHYTICA, 2011, 177 (02) : 241 - 251
  • [2] Characterization of a wheat histidine-containing phosphotransfer protein (HP) that is regulated by cytokinin-mediated inhibition of leaf senescence
    Ma, QH
    Tian, B
    PLANT SCIENCE, 2005, 168 (06) : 1507 - 1514
  • [3] Mapping and characterization of the new adult plant leaf rust resistance gene Lr77 derived from Santa Fe winter wheat
    James A. Kolmer
    Zhenqi Su
    Amy Bernardo
    Guihua Bai
    Shiaoman Chao
    Theoretical and Applied Genetics, 2018, 131 : 1553 - 1560
  • [4] Mapping and characterization of the new adult plant leaf rust resistance gene Lr77 derived from Santa Fe winter wheat
    Kolmer, James A.
    Su, Zhenqi
    Bernardo, Amy
    Bai, Guihua
    Chao, Shiaoman
    THEORETICAL AND APPLIED GENETICS, 2018, 131 (07) : 1553 - 1560