Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method

被引:0
|
作者
Hoo Min Lee
Tae Hun Kim
Gil Ho Yoon
机构
[1] Hanyang University,School of Mechanical Engineering
来源
Computational Particle Mechanics | 2024年 / 11卷
关键词
Granular particle; Cone-shaped projectile; Discrete element method; Rate-independent friction force; Inertial drag force;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, the penetration behavior of a cone-shaped projectile into granular particles was analyzed using simulations based on the discrete element method (DEM). The rate-independent friction force and inertial drag force proportional to the squared projectile velocity are the principal force terms that interact between the projectile and the particles. Simulation results show that the friction force and inertial drag force follow the power law with respect to penetration depth and have changing tendencies before and after the complete penetration of the projectile into particles. Based on the results, a mathematical model is proposed to simplify the force terms using the penetration depth, projectile tip angle, and projectile length. The simplified force terms are physically explained using changes in the projectile–particle contact area and the fluidization of particles during dynamic collisions. Experiments were conducted using steel projectiles and ABS plastic beads to verify the accuracy of the mathematical model for real-life cases. The results of this study validate the proposed mathematical model of the rate-independent friction force and inertial drag force regarding the cone-shaped projectile behavior during penetration into granular particles.
引用
收藏
页码:689 / 703
页数:14
相关论文
共 50 条
  • [31] Random packing of tetrahedral particles using the polyhedral discrete element method
    Zhao, Shiwei
    Zhou, Xiaowen
    Liu, Wenhui
    Lai, Chengguang
    PARTICUOLOGY, 2015, 23 : 109 - 117
  • [32] Simulating breakage tests using the discrete element method with polyhedral particles
    de Arruda Tino, Alan A.
    Tavares, Luis Marcelo
    COMPUTATIONAL PARTICLE MECHANICS, 2022, 9 (04) : 811 - 823
  • [33] Simulating breakage tests using the discrete element method with polyhedral particles
    Alan A. de Arruda Tino
    Luís Marcelo Tavares
    Computational Particle Mechanics, 2022, 9 : 811 - 823
  • [34] Evaluation the effect of particle sphericity on direct shear mechanical behavior of granular materials using discrete element method (Dem)
    Talafha M.S.
    Oldal I.
    International Journal for Engineering Modelling, 2021, 34 (01) : 1 - 18
  • [35] Modelling and verification of sesame seed particles using the discrete element method
    Sharaby, Noureldin
    Doroshenko, Artyom
    Butovchenko, Andrey
    JOURNAL OF AGRICULTURAL ENGINEERING, 2022, 53 (02)
  • [36] Modeling granular soils liquefaction using coupled lattice Boltzmann method and discrete element method
    El Shamy, Usama
    Abdelhamicl, Yasser
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2014, 67 : 119 - 132
  • [37] Analysis of Traveling Behavior of Nut Coke Particles in Bell-type Charging Process of Blast Furnace by Using Discrete Element Method
    Mio, Hiroshi
    Komatsuki, Satoshi
    Akashi, Masatoshi
    Shimosaka, Atsuko
    Shirakawa, Yoshiyuki
    Hidaka, Jusuke
    Kadowaki, Masatomo
    Yokoyama, Hirokazu
    Matsuzaki, Shinroku
    Kunitomo, Kazuya
    ISIJ INTERNATIONAL, 2010, 50 (07) : 1000 - 1009
  • [38] Discrete Element Method Study of Micro-Macro Mechanical Behavior of Unsaturated Granular Soils
    Salehinik, Mohammad
    Mirghasemi, Ali Asghar
    TRANSPORTATION INFRASTRUCTURE GEOTECHNOLOGY, 2025, 12 (03)
  • [39] Analysis of hopper eccentricity effect on granular flow in three-dimensional silos using discrete element method
    Benyamine, M.
    Fezzioui, N.
    Hami, O.
    Djermane, M.
    Slimani, A.
    CONSTRUCTION MATERIALS AND STRUCTURES, 2014, : 1215 - 1222
  • [40] Effect of Binder Coatings on the Fracture Behavior of Polymer-Crystal Composite Particles Using the Discrete Element Method
    Wang, Huabin
    Li, Jianmei
    Hu, Gaoyang
    Zhou, Bo
    Guo, Yuchen
    COATINGS, 2021, 11 (09)