The true prosoluble completion of a group: Examples and open problems

被引:0
|
作者
Goulnara Arzhantseva
Pierre de la Harpe
Delaram Kahrobaei
Zoran Šunić
机构
[1] Université de Genève,Section de Mathématiques
[2] New York City College of Technology (CUNY),Mathematics Department (Namm 724)
[3] Texas A&M University,Department of Mathematics
来源
Geometriae Dedicata | 2007年 / 124卷
关键词
Soluble group; Residual properties; True prosoluble completion; Profinite completion; Open problems; Grigorchuk group; 20E18; 20F14; 20F22;
D O I
暂无
中图分类号
学科分类号
摘要
The true prosoluble completion\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\mathcal S (\Gamma)$$\end{document} of a group Γ is the inverse limit of the projective system of soluble quotients of Γ. Our purpose is to describe examples and to point out some natural open problems. We discuss a question of Grothendieck for profinite completions and its analogue for true prosoluble and true pronilpotent completions.
引用
收藏
页码:5 / 26
页数:21
相关论文
共 38 条