The true prosoluble completion of a group: Examples and open problems

被引:0
|
作者
Goulnara Arzhantseva
Pierre de la Harpe
Delaram Kahrobaei
Zoran Šunić
机构
[1] Université de Genève,Section de Mathématiques
[2] New York City College of Technology (CUNY),Mathematics Department (Namm 724)
[3] Texas A&M University,Department of Mathematics
来源
Geometriae Dedicata | 2007年 / 124卷
关键词
Soluble group; Residual properties; True prosoluble completion; Profinite completion; Open problems; Grigorchuk group; 20E18; 20F14; 20F22;
D O I
暂无
中图分类号
学科分类号
摘要
The true prosoluble completion\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\mathcal S (\Gamma)$$\end{document} of a group Γ is the inverse limit of the projective system of soluble quotients of Γ. Our purpose is to describe examples and to point out some natural open problems. We discuss a question of Grothendieck for profinite completions and its analogue for true prosoluble and true pronilpotent completions.
引用
收藏
页码:5 / 26
页数:21
相关论文
共 38 条
  • [1] The true prosoluble completion of a group: Examples and open problems
    Arzhantseva, Goulnara
    de la Harpe, Pierre
    Kahrobaei, Delaram
    Sunic, Zoran
    GEOMETRIAE DEDICATA, 2007, 124 (01) : 5 - 26
  • [2] PROFINITE COMPLETION OF GRIGORCHUK'S GROUP IS NOT FINITELY PRESENTED
    Benli, Mustafa Gokhan
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2012, 22 (05)
  • [3] Profinite completion of operads and the Grothendieck-Teichmuller group
    Horel, Geoffroy
    ADVANCES IN MATHEMATICS, 2017, 321 : 326 - 390
  • [4] Open problems in mathematical physics
    Coley, Alan A.
    PHYSICA SCRIPTA, 2017, 92 (09)
  • [5] Open Problems for Painleve Equations
    Clarkson, Peter A.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2019, 15
  • [6] Open problems in hash function security
    Andreeva, Elena
    Mennink, Bart
    Preneel, Bart
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 77 (2-3) : 611 - 631
  • [7] Open problems in computational linear algebra
    Sen, SK
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : 926 - 934
  • [8] Noise in the complex plane: open problems
    Daniel Bessis
    Luca Perotti
    Daniel Vrinceanu
    Numerical Algorithms, 2013, 62 : 559 - 569
  • [9] Seven open problems in applied combinatorics
    Aksoy, Sinan G.
    Bennink, Ryan
    Chen, Yuzhou
    Frias, Jose
    Gel, Yulia R.
    Kay, Bill
    Naumann, Uwe
    Marrero, Carlos Ortiz
    Petyuk, Anthony, V
    Roy, Sandip
    Segovia-Dominguez, Ignacio
    Veldt, Nate
    Young, Stephen J.
    JOURNAL OF COMBINATORICS, 2023, 14 (04) : 559 - 601
  • [10] Open problems in hash function security
    Elena Andreeva
    Bart Mennink
    Bart Preneel
    Designs, Codes and Cryptography, 2015, 77 : 611 - 631