Superior conductivity and accelerated kinetics Na3V2(PO4)2F3@CNTs with high performance for sodium-ion batteries

被引:0
|
作者
Haitao Tong
Haowei Han
Guangying Zhang
Kefu Gao
Qingyu Dong
Fangdong Hu
Xiaolei Jiang
机构
[1] Linyi University,School of Chemistry and Chemical Engineering
[2] Chinese Academy of Sciences,CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano
来源
Ionics | 2022年 / 28卷
关键词
Superior conductivity; Accelerated kinetics; Carbon nanotubes; Electrochemical performance; Sodium-ion batteries;
D O I
暂无
中图分类号
学科分类号
摘要
Na3V2(PO4)2F3 with a high theoretical energy density, robust 3D structure, and superior thermal stability has become one of the popular cathode materials for sodium ion batteries. Currently, its poor intrinsic electronic conductivity leads to unsatisfactory rate performance, which is still the bottleneck for commercializing sodium-ion batteries. In this work, carbon nanotube–intertwined Na3V2(PO4)2F3 nanospheres (notated as NVPF@CNTs) are successfully synthesized by a solvothermal method and subsequent heat treatment. In NVPF@CNTs composites, the carbon nanotubes constituted a continuous conductive 3D carbon network, realizing the improvement of electrical conductivity. The NVPF nanospheres are exposed to the electrolyte to increase the contact area with the electrolyte and greatly shorten the diffusion distance of Na+. The unique architecture endorses superior electrochemical performance and good reaction kinetics. Thus, the NVPF@CNTs as cathode exhibits good cycling performance (117.6 mAh g−1 at 0.2 C after 300 cycles) and rate capability (73.4 mAh g−1 at 5 C with a high capacity retention ratio of 91.6% after 600 cycles). The excellent electrochemical performance for NVPF@CNTs opens up a new way to achieve high performance of sodium-ion batteries.
引用
收藏
页码:2827 / 2835
页数:8
相关论文
共 50 条
  • [21] Effect of chromium doping on Na3V2(PO4)2F3@C as promising positive electrode for sodium-ion batteries
    Criado, A.
    Lavela, P.
    Perez-Vicente, C.
    Ortiz, G. F.
    Tirado, J. L.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 856
  • [22] Dual-Carbon-Decorated Na3V2(PO4)3 Material for Sodium-Ion Batteries
    Wenhao Zhu
    Qianlun Mao
    Yuexin Jia
    Jiangfeng Ni
    Lijun Gao
    Journal of Electronic Materials, 2023, 52 : 836 - 846
  • [23] Construction of Na3V2(PO4)2F3@C/CNTs nanocomposites with three-dimensional conductive network as cathode materials for sodium-ion batteries
    Qin, Mulan
    Qin, Nannan
    Lei, Mingjie
    Ji, Dandan
    Liu, Wanmin
    Cao, Xinxin
    Fang, Guozhao
    Liang, Shuquan
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 920
  • [24] Dual-Carbon-Decorated Na3V2(PO4)3 Material for Sodium-Ion Batteries
    Zhu, Wenhao
    Mao, Qianlun
    Jia, Yuexin
    Ni, Jiangfeng
    Gao, Lijun
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (02) : 836 - 846
  • [25] Environmental Impact Assessment of Na3V2(PO4)3 Cathode Production for Sodium-Ion Batteries
    Rey, Irene
    Iturrondobeitia, Maider
    Akizu-Gardoki, Ortzi
    Minguez, Rikardo
    Lizundia, Erlantz
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (08):
  • [26] Graphene oxide wrapped Na3V2(PO4)3/C nanocomposite as superior cathode material for sodium-ion batteries
    Chu, Zhaolian
    Yue, Caibo
    CERAMICS INTERNATIONAL, 2016, 42 (01) : 820 - 827
  • [27] Insights into the charge storage mechanism of Na3V2(PO4)3 cathode in sodium-ion batteries
    Li, Bo
    Liu, Jing
    Xiu, Xia
    Yang, Guanglei
    Zhu, Kaixing
    BULLETIN OF MATERIALS SCIENCE, 2023, 46 (02)
  • [28] Benefits of Chromium Substitution in Na3V2(PO4)3 as a Potential Candidate for Sodium-Ion Batteries
    Aragon, Maria J.
    Lavela, Pedro
    Ortiz, Gregorio F.
    Tirado, Jose L.
    CHEMELECTROCHEM, 2015, 2 (07): : 995 - 1002
  • [29] Vanadium substituted Fe, Cr co-doped high performance C/Na3V2(PO4)2F3 cathode for sodium-ion batteries
    Mahato, Sanchayan
    Das, Sayan
    Gupta, Debakshi
    Biswas, Koushik
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 955
  • [30] Na3V2(PO4)3 nanoparticles encapsulated in carbon nanofibers with excellent Na+ storage for sodium-ion batteries
    Zhou, Zifan
    Li, Na
    Zhang, Chi
    Chen, Xin
    Xu, Feng
    Peng, Chao
    SOLID STATE IONICS, 2018, 326 : 77 - 81