Augmentation of Covering Arrays of Strength Two

被引:0
|
作者
Charles J. Colbourn
机构
[1] Arizona State University,School of Computing, Informatics, and Decision Systems Engineering
[2] Beihang University,State Key Laboratory of Software Development Environment
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Covering array; Augmentation; Kruskal–Katona theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Augmentation is an operation to increase the number of symbols in a covering array, without unnecessarily increasing the number of rows. For covering arrays of strength two, one type of augmentation forms a covering array on v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} symbols from one on v-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-1$$\end{document} symbols together with v-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-1$$\end{document} covering arrays each on two symbols. A careful analysis of the structure of the optimal binary covering arrays underlies an augmentation operation that reduces the number of rows required. Consequently a number of covering array numbers are improved.
引用
收藏
页码:2137 / 2147
页数:10
相关论文
共 50 条
  • [41] Heterogeneous Hash Families and Covering Arrays
    Colbourn, Charles J.
    Torres-Jimenez, Jose
    ERROR-CORRECTING CODES, FINITE GEOMETRIES AND CRYPTOGRAPHY, 2010, 523 : 3 - +
  • [42] UPPER BOUNDS ON THE SIZE OF COVERING ARRAYS
    Sarkar, Kaushik
    Colbourn, Charles J.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (02) : 1277 - 1293
  • [43] Asymptotic and constructive methods for covering perfect hash families and covering arrays
    Charles J. Colbourn
    Erin Lanus
    Kaushik Sarkar
    Designs, Codes and Cryptography, 2018, 86 : 907 - 937
  • [44] Asymptotic and constructive methods for covering perfect hash families and covering arrays
    Colbourn, Charles J.
    Lanus, Erin
    Sarkar, Kaushik
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (04) : 907 - 937
  • [45] Supercomputing and grid computing on the verification of covering arrays
    Himer Avila-George
    Jose Torres-Jimenez
    Nelson Rangel-Valdez
    Abel Carrión
    Vicente Hernández
    The Journal of Supercomputing, 2012, 62 : 916 - 945
  • [46] Metaheuristic algorithms for building Covering Arrays: A review
    Adriana Timana-Pena, Jimena
    Alberto Cobos-Lozada, Carlos
    Torres-Jimenez, Jose
    REVISTA FACULTAD DE INGENIERIA, UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA, 2016, 25 (43): : 31 - 45
  • [47] PARTIAL COVERING ARRAYS FOR DATA HIDING AND QUANTIZATION
    Potapov, V. N.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 561 - 569
  • [48] Algorithmic methods for covering arrays of higher index
    Dougherty, Ryan E.
    Kleine, Kristoffer
    Wagner, Michael
    Colbourn, Charles J.
    Simos, Dimitris E.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (01)
  • [49] Supercomputing and grid computing on the verification of covering arrays
    Avila-George, Himer
    Torres-Jimenez, Jose
    Rangel-Valdez, Nelson
    Carrion, Abel
    Hernandez, Vicente
    JOURNAL OF SUPERCOMPUTING, 2012, 62 (02) : 916 - 945
  • [50] Algorithmic methods for covering arrays of higher index
    Ryan E. Dougherty
    Kristoffer Kleine
    Michael Wagner
    Charles J. Colbourn
    Dimitris E. Simos
    Journal of Combinatorial Optimization, 2023, 45