Augmentation of Covering Arrays of Strength Two

被引:0
|
作者
Charles J. Colbourn
机构
[1] Arizona State University,School of Computing, Informatics, and Decision Systems Engineering
[2] Beihang University,State Key Laboratory of Software Development Environment
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Covering array; Augmentation; Kruskal–Katona theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Augmentation is an operation to increase the number of symbols in a covering array, without unnecessarily increasing the number of rows. For covering arrays of strength two, one type of augmentation forms a covering array on v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} symbols from one on v-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-1$$\end{document} symbols together with v-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v-1$$\end{document} covering arrays each on two symbols. A careful analysis of the structure of the optimal binary covering arrays underlies an augmentation operation that reduces the number of rows required. Consequently a number of covering array numbers are improved.
引用
收藏
页码:2137 / 2147
页数:10
相关论文
共 50 条
  • [21] Covering arrays on graphs
    Meagher, K
    Stevens, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (01) : 134 - 151
  • [22] Resolvable covering arrays
    Colbourn C.J.
    Journal of Statistical Theory and Practice, 2013, 7 (4) : 630 - 649
  • [23] Ordered covering arrays and upper bounds on covering codes
    Castoldi, Andre Guerino
    Carmelo, Emerson Monte L.
    Moura, Lucia
    Panario, Daniel
    Stevens, Brett
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (06) : 304 - 329
  • [24] Covering and radius-covering arrays: Constructions and classification
    Colbourn, C. J.
    Keri, G.
    Rivas Soriano, P. P.
    Schlage-Puchta, J. -C.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (11) : 1158 - 1180
  • [25] Covering arrays from cyclotomy
    Charles J. Colbourn
    Designs, Codes and Cryptography, 2010, 55 : 201 - 219
  • [26] Mixed covering Arrays on graphs
    Meagher, Karen
    Moura, Lucia
    Zekaoui, Latifa
    JOURNAL OF COMBINATORIAL DESIGNS, 2007, 15 (05) : 393 - 404
  • [27] Covering arrays from cyclotomy
    Colbourn, Charles J.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 55 (2-3) : 201 - 219
  • [28] An extension of a construction of covering arrays
    Panario, Daniel
    Saaltink, Mark
    Stevens, Brett
    Wevrick, Daniel
    JOURNAL OF COMBINATORIAL DESIGNS, 2020, 28 (11) : 842 - 861
  • [29] Covering arrays and hash families
    Colbourn, Charles J.
    INFORMATION SECURITY, CODING THEORY AND RELATED COMBINATORICS: INFORMATION CODING AND COMBINATORICS, 2011, 29 : 99 - 135
  • [30] Group construction of covering arrays
    Meagher, K
    Stevens, B
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (01) : 70 - 77