Quasiconformal and harmonic mappings between Jordan domains

被引:0
作者
David Kalaj
机构
[1] University of Montenegro,Faculty of Natural Sciences and Mathematics
来源
Mathematische Zeitschrift | 2008年 / 260卷
关键词
Planar harmonic mappings; Quasiconformal mappings; Poisson integral; Primary 30C55; Secondary 31C62;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω and Ω1 be Jordan domains, let μ ∈ (0, 1], and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: \Omega \mapsto \Omega_1$$\end{document} be a harmonic homeomorphism. The object of the paper is to prove the following results: (a) If f is q.c. and ∂Ω, ∂Ω1 ∈ C1,μ, then f is Lipschitz; (b) if f is q.c., ∂Ω, ∂Ω1 ∈ C1,μ and Ω1 is convex, then f is bi-Lipschitz; and (c) if Ω is the unit disk, Ω1 is convex, and ∂Ω1 ∈ C1,μ, then f is quasiconformal if and only if its boundary function is bi-Lipschitz and the Hilbert transform of its derivative is in L∞. These extend the results of Pavlović (Ann. Acad. Sci. Fenn. 27:365–372, 2002).
引用
收藏
页码:237 / 252
页数:15
相关论文
共 11 条
[1]  
Kalaj D.(2003)On harmonic diffeomorphisms of the unit disc onto a convex domain. Complex Variables Theory Appl. 48 175-187
[2]  
Kalaj D.(2005)Boundary correspondence under harmonic quasiconformal homeomorfisms of a half-plane Ann. Acad. Sci. Fenn. Math. 30 159-165
[3]  
Pavlović M.(2004)Quasiconformal harmonic functions between convex domains Publ. Inst. Math. Nouv. Ser. 76 3-20
[4]  
Kalaj D.(2006)Inner estimate and quasiconformal harmonic maps between smooth domains J. Anal. Math. 100 117-132
[5]  
Kalaj D.(1982)Boundary behavior of the Riemann mapping function of asymptotically conformal curves J. Math. Z. 179 299-323
[6]  
Mateljević M.(1936)On the non-vanishing of the Jacobian in certain in one-to-one mappings Bull. Am. Math. Soc. 42 689-692
[7]  
Lesley F.D.(1968)On harmonic quasiconformal mappings Ann. Acad. Sci. Fenn. Ser. A I 425 3-10
[8]  
Warschawski S.E.(2002)Boundary correspondence under harmonic quasiconformal homeomorfisms of the unit disc Ann. Acad. Sci. Fenn. 27 365-372
[9]  
Lewy H.(undefined)undefined undefined undefined undefined-undefined
[10]  
Martio O.(undefined)undefined undefined undefined undefined-undefined