Concerning the equations of the acoustics of moving media

被引:0
|
作者
A. I. Shnip
机构
关键词
Stress Tensor; Acoustics; Reference Configuration; Adiabatic Process; Spatial Description;
D O I
10.1007/BF02699399
中图分类号
学科分类号
摘要
Using the methods of rational mechanics, a new equation of the acoustics of inhomogeneous unsteadily moving media is derived. Its advantage over traditional approaches is demonstrated.
引用
收藏
页码:815 / 820
页数:5
相关论文
共 20 条
  • [1] Acoustics of biporous saturated media
    Auriault, Jean-Louis
    TRANSPORT IN POROUS MEDIA, 2006, 64 (02) : 247 - 259
  • [2] Acoustics of Biporous Saturated Media
    Jean-Louis Auriault
    Transport in Porous Media, 2006, 64 : 247 - 259
  • [3] NUMERICAL SIMULATION OF ACOUSTICS IN HETEROGENEOUS MEDIA
    Staab, Dominik
    Nowak, Stefanie
    Sternel, Doerte C.
    Schaefer, Michael
    Coupled Problems in Science and Engineering VI, 2015, : 791 - 799
  • [4] Acoustics of rotating deformable saturated porous media
    Auriault, JL
    TRANSPORT IN POROUS MEDIA, 2005, 61 (02) : 235 - 257
  • [5] On geometric acoustics in random, locally anisotropic media
    Martin Ostoja-Starzewski
    Continuum Mechanics and Thermodynamics, 2001, 13 : 131 - 134
  • [6] Acoustics of Rotating Deformable Saturated Porous Media
    JEAN-LOUIS AURIAULT
    Transport in Porous Media, 2005, 61 : 235 - 237
  • [7] On geometric acoustics in random, locally anisotropic media
    Ostoja-Starzewski, M
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2001, 13 (02) : 131 - 134
  • [8] On direct numerical treatment of hypersingular integral equations arising in mechanics and acoustics
    Iovane, G
    Lifanov, IK
    Sumbatyan, MA
    ACTA MECHANICA, 2003, 162 (1-4) : 99 - 110
  • [9] On direct numerical treatment of hypersingular integral equations arising in mechanics and acoustics
    G. Iovane
    I.K. Lifanov
    M.A. Sumbatyan
    Acta Mechanica, 2003, 162 : 99 - 110
  • [10] A Modification of Gradient Descent Method for Solving Coefficient Inverse Problem for Acoustics Equations
    Klyuchinskiy, Dmitriy
    Novikov, Nikita
    Shishlenin, Maxim
    COMPUTATION, 2020, 8 (03)