A structural theorem for Kleene algebras is proved, showing that an element of a Kleene algebra can be looked upon as an ordered pair of sets, and that negation with the Kleene property (called the ‘Kleene negation’) is describable by the set-theoretic complement. The propositional logic LK\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {L}}_{K}$$\end{document} of Kleene algebras is shown to be sound and complete with respect to a 3-valued and a rough set semantics. It is also established that Kleene negation can be considered as a modal operator, due to a perp semantics of LK\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {L}}_{K}$$\end{document}. Moreover, another representation of Kleene algebras is obtained in the class of complex algebras of compatibility frames. One concludes with the observation that LK\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {L}}_{K}$$\end{document} can be imparted semantics from different perspectives.