Kleene Algebras and Logic: Boolean and Rough Set Representations, 3-Valued, Rough Set and Perp Semantics

被引:0
作者
Arun Kumar
Mohua Banerjee
机构
[1] Indian Institute of Technology,Department of Mathematics and Statistics
来源
Studia Logica | 2017年 / 105卷
关键词
Kleene algebras; 3-Valued logic; Rough sets; Perp semantics;
D O I
暂无
中图分类号
学科分类号
摘要
A structural theorem for Kleene algebras is proved, showing that an element of a Kleene algebra can be looked upon as an ordered pair of sets, and that negation with the Kleene property (called the ‘Kleene negation’) is describable by the set-theoretic complement. The propositional logic LK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{K}$$\end{document} of Kleene algebras is shown to be sound and complete with respect to a 3-valued and a rough set semantics. It is also established that Kleene negation can be considered as a modal operator, due to a perp semantics of LK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{K}$$\end{document}. Moreover, another representation of Kleene algebras is obtained in the class of complex algebras of compatibility frames. One concludes with the observation that LK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{K}$$\end{document} can be imparted semantics from different perspectives.
引用
收藏
页码:439 / 469
页数:30
相关论文
共 31 条
[11]  
Ciucci D(2005)Negation in the context of gaggle theory Studia Logica 80 235-264
[12]  
Dubois D(1997)A logic for rough sets Theoretical Computer Science 179 427-436
[13]  
Cignoli R(1997)Belnap’s four-valued logic and De Morgan lattices Logic Journal of the IGPL 5 1-29
[14]  
Cignoli R(2003)Normal forms and truth tables for fuzzy logics Fuzzy Sets and Systems 138 25-51
[15]  
Comer S(2011)Representation of Nelson algebra by rough sets determined by quasiorder Algebra Universalis 66 163-179
[16]  
Dunn J(1958)Lattices with involution Transactions of American Mathematical Society 87 485-491
[17]  
Dunn J(1974)Construction of regular double p-algebras Bulletin de la Societe Royale des Sciences de Liege 43 238-246
[18]  
Düntsch I(1990)Remarks on special lattices and related constructive logics with strong negation Notre Dame Journal of Formal Logic 31 515-528
[19]  
Font JM(1982)Rough sets International Journal of Computer and Information Sciences 11 341-356
[20]  
Gehrke M(1995)Characterizing Belnap’s logic via De Morgan’s laws Mathematical Logic Quarterly 41 442-454