Kleene Algebras and Logic: Boolean and Rough Set Representations, 3-Valued, Rough Set and Perp Semantics

被引:0
作者
Arun Kumar
Mohua Banerjee
机构
[1] Indian Institute of Technology,Department of Mathematics and Statistics
来源
Studia Logica | 2017年 / 105卷
关键词
Kleene algebras; 3-Valued logic; Rough sets; Perp semantics;
D O I
暂无
中图分类号
学科分类号
摘要
A structural theorem for Kleene algebras is proved, showing that an element of a Kleene algebra can be looked upon as an ordered pair of sets, and that negation with the Kleene property (called the ‘Kleene negation’) is describable by the set-theoretic complement. The propositional logic LK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{K}$$\end{document} of Kleene algebras is shown to be sound and complete with respect to a 3-valued and a rough set semantics. It is also established that Kleene negation can be considered as a modal operator, due to a perp semantics of LK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{K}$$\end{document}. Moreover, another representation of Kleene algebras is obtained in the class of complex algebras of compatibility frames. One concludes with the observation that LK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_{K}$$\end{document} can be imparted semantics from different perspectives.
引用
收藏
页码:439 / 469
页数:30
相关论文
共 31 条
[1]  
Aguzzoli S(2013)MV-algebras freely generated by finite Kleene algebras Algebra Universalis 70 245-270
[2]  
Cabrer ML(2008)Rough sets and 3-valued logics Studia Logica 90 69-92
[3]  
Marra V(1997)Rough sets and 3-valued Łukasiewicz logic Fundamenta Informaticae 31 213-220
[4]  
Avron A(1996)Rough sets through algebraic logic Fundamenta Informaticae 28 211-221
[5]  
Konikowska B(2014)A temporal semantics for nilpotent minimum logic International Journal of Approximate Reasoning 55 391-401
[6]  
Banerjee M(2011)Algebraic models of deviant modal operators based on De Morgan and Kleene lattices Information Sciences 181 4075-4100
[7]  
Banerjee M(1965)Boolean elements in Łukasiewicz algebras I, Proceedings of the Japan Academy 41 670-675
[8]  
Chakraborty MK(1986)The class of Kleene algebras satisfying an interpolation property and Nelson algebras Algebra Universalis 23 262-292
[9]  
Bianchi M(1995)Perfect extensions of regular double Stone algebras Algebra Universalis 34 96-109
[10]  
Cattaneo G(1995)Positive modal logic Studia Logica 55 301-317