Probing the inclusion complexes of short-lived radicals with β-cyclodextrin by CIDNP

被引:0
作者
Simon V. Babenko
Alexander I. Kruppa
机构
[1] Voevodsky Institute of Chemical Kinetics & Combustion SB RAS,
来源
Journal of Inclusion Phenomena and Macrocyclic Chemistry | 2019年 / 95卷
关键词
β-Cyclodextrin; 2,2′-Dipyridine; Electron transfer; CIDNP;
D O I
暂无
中图分类号
学科分类号
摘要
An extension of the CIDNP kinetics approach was proposed based on a particular example of the photoreaction between 2,2′-bipyridine (DP) and N-acetyl l-tyrosine (TyrO2−) at alkaline pH in the presence of β-cyclodextrin (CD). It was found that protonated DP radical (DPH·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DP{H^ \cdot }$$\end{document}) generated in the photoreaction is encapsulated into CD with binding constant, which is close to that for excited triplet state (3DP) and ground state (DP) of 2,2′-bipyridine and is equal to approximately 100 M− 1. The obtained T1 relaxation time of 5,5′-protons of DPH·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DP{H^ \cdot }$$\end{document} in complex with CD (8 µs) is less than in the case of free DPH·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DP{H^ \cdot }$$\end{document} (45 µs), however, it is larger than that theoretically predicted for the rigid complex (= 1.7 µs) indicating the anisotropic rotation of DPH·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DP{H^ \cdot }$$\end{document} inside CD cavity. The recombination rate constant between DPH·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DP{H^ \cdot }$$\end{document} in complex with CD and tyrosine radical (TyrO-·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Tyr{O^{ - \cdot }}$$\end{document}) (1×109M-1s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \times {10^9}\,{\text{M}^{ - 1}}\,{\text{s}^{ - 1}}$$\end{document}) is somewhat lower than the recombination rate constant between free DPH·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$DP{H^ \cdot }$$\end{document} and TyrO-·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Tyr{O^{ - \cdot }}$$\end{document} (1.6×109M-1s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.6 \times {10^9}\;{\text{M}^{ - 1}}\;{\text{s}^{ - 1}}$$\end{document}).
引用
收藏
页码:321 / 330
页数:9
相关论文
共 73 条
[1]  
Kaifer AE(1999)Interplay between molecular recognition and redox chemistry Acc Chem. Res. 32 62-71
[2]  
Babenko SV(2017)Investigation of β-cyclodextrin complex formation with 2,2’–dipyridine in ground and excited triplet States J. Incl. Phenom. Macrocycl. Chem. 89 117-125
[3]  
Tsentalovich YP(2000)Laser flash photolysis and time resolved CIDNP study of photoreaction of 2,2′-dipyridyl with N-acetyl tyrosine in aqueous solutions Journal of Photochemistry and Photobiology A: Chemistry 131 33-40
[4]  
Kruppa AI(1999)Kinetics and mechanism of the photochemical reaction of 2,2’-dipyridyl and tryptophan in water: time-resolved CIDNP and laser flash photolysis study J. Phys. Chem. A 103 5362-5368
[5]  
Tsentalovich Yuri P.(2002)Time-resolved CIDNP study of intramolecular charge transfer in the dipeptide tryptophan-tyrosine J. Phys. Chem. B 106 1455-1460
[6]  
Morozova Olga B.(1960)Acidity measurements with the glass electrode in H J. Phys. Chem. 64 632-637
[7]  
Tsentalovich YP(2002)O-D J. Photochem. Photobiol. A 152 73-78
[8]  
Morozova OB(1984)O mixtures Pure Appl. Chem. 56 247-292
[9]  
Yurkovskaya AV(2009)Acidity of carboxyl group of tyrosine and its analogues and derivatives studied by steady-state fluorescence spectroscopy J. Inorg. Biochem. 103 58-63
[10]  
Hore PJ(2004)Critical survey of the formation constants of complexes of histidine, phenylalanine, tyrosine, L-DOPA and tryptophan J. Inorg. Biochem. 98 161-166