A short proof of Levinson’s theorem

被引:0
|
作者
Matthew P. Young
机构
[1] Texas A&M University,Department of Mathematics
[2] Institute for Advanced Study,School of Mathematics
来源
Archiv der Mathematik | 2010年 / 95卷
关键词
Primary 11M26; Riemann zeta function; Critical line; Zeros; Levinson; Mollifier; Moment; Mean value;
D O I
暂无
中图分类号
学科分类号
摘要
We give a short proof of Levinson’s result that over 1/3 of the zeros of the Riemann zeta function are on the critical line.
引用
收藏
页码:539 / 548
页数:9
相关论文
共 50 条
  • [31] Inequalities for zeros of Jacobi polynomials via Sturm’s theorem: Gautschi’s conjectures
    Yen Chi Lun
    Fernando Rodrigo Rafaeli
    Numerical Algorithms, 2014, 67 : 549 - 563
  • [32] Hilbert's Double Series Theorem's Extensions via the Mathieu Series Approach
    Pogany, Tibor K.
    AXIOMS, 2022, 11 (11)
  • [33] THE MULTIVARIATE RATE OF CONVERGENCE FOR SELBERG'S CENTRAL LIMIT THEOREM
    Roberts, Asher
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (03): : 3348 - 3369
  • [34] New estimate in Vinogradov’s mean-value theorem
    S. N. Preobrazhenskii
    Mathematical Notes, 2011, 89 : 277 - 290
  • [35] A GAUSSIAN VERSION OF LITTLEWOOD'S THEOREM FOR RANDOM POWER SERIES
    Cheng, Guozheng
    Fang, Xiang
    Guo, Kunyu
    Liu, Chao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (08) : 3525 - 3536
  • [36] Sturm's Comparison Theorem for Classical Discrete Orthogonal Polynomials
    Suzuki, A.
    RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [37] New Estimate in Vinogradov's Mean-Value Theorem
    Preobrazhenskii, S. N.
    MATHEMATICAL NOTES, 2011, 89 (1-2) : 277 - 290
  • [38] INEQUALITIES FOR ZEROS OF JACOBI POLYNOMIALS VIA OBRECHKOFF'S THEOREM
    Area, Ivan
    Dimitrov, Dimitar K.
    Godoy, Eduardo
    Rafaeli, Fernando R.
    MATHEMATICS OF COMPUTATION, 2012, 81 (278) : 991 - 1004
  • [39] ANOTHER PROOF OF SPIRA'S INEQUALITY AND ITS APPLICATION TO THE RIEMANN HYPOTHESIS
    Nazardonyavi, Sadegh
    Yakubovich, Semyon
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (02): : 167 - 174
  • [40] Mergelyan's theorem with polynomials non-vanishing on unions of sets
    Andersson, J.
    Gauthier, P. M.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (01) : 99 - 109