Zig-zagging in geometrical reasoning in technological collaborative environments: a Mathematical Working Space-framed study concerning cognition and affect

被引:19
作者
Gómez-Chacón I.M. [1 ]
Romero Albaladejo I.M. [2 ]
del Mar García López M. [2 ]
机构
[1] Facultad de Ciencias Matemáticas e Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Plaza de Ciencias 3, Madrid
[2] Universidad de Almería, La Cañada de San Urbano s/n, Almería
来源
ZDM | 2016年 / 48卷 / 6期
关键词
Argumentation; Cognition-affect interplay; GeoGebra; Geometry; Mathematical Working Space; Secondary education;
D O I
10.1007/s11858-016-0755-2
中图分类号
学科分类号
摘要
This study highlights the importance of cognition-affect interaction pathways in the construction of mathematical knowledge. Scientific output demands further research on the conceptual structure underlying such interaction aimed at coping with the high complexity of its interpretation. The paper discusses the effectiveness of using a dynamic model such as that outlined in the Mathematical Working Spaces (MWS) framework, in order to describe the interplay between cognition and affect in the transitions from instrumental to discursive geneses in geometrical reasoning. The results based on empirical data from a teaching experiment at a middle school show that the use of dynamic geometry software favours students’ attitudinal and volitional dimensions and helps them to maintain productive affective pathways, affording greater intellectual independence in mathematical work and interaction with the context that impact learning opportunities in geometric proofs. The reflective and heuristic dimensions of teacher mediation in students’ learning is crucial in the transition from instrumental to discursive genesis and working stability in the Instrumental-Discursive plane of MWS. © 2016, FIZ Karlsruhe.
引用
收藏
页码:909 / 924
页数:15
相关论文
共 37 条
[1]  
Andra C., Pepin B., Rosken-Winter B., A specific language towards a new conceptual framework for networking methodologies in the field of affect, From beliefs and affect to dynamic systems in mathematics education. Exploring a mosaic of relationships and interactions, pp. 339-354, (2015)
[2]  
Arzarello F., Bosch M., Gascon J., Sabena C., The ostensive dimension through the lenses of two didactic approaches, ZDM-The International Journal on Mathematics Education, 40, 2, pp. 179-188, (2008)
[3]  
Balacheff N., Processus de preuve et situations de validation, Educational Studies in Mathematics, 18, pp. 147-176, (1987)
[4]  
Balacheff N., Procesos de prueba en los alumnos de matemáticas, (2000)
[5]  
Coutat S., Richard P., Les figures dynamiques dans un espace de travail mathématique pour l’apprentissage des propriétés géométriques, Annales de Didactique et de Sciences Cognitives, 16, pp. 97-126, (2011)
[6]  
De la Torre E., Perez M., Paradigmas y espacios de trabajo geométricos en los libros de texto de la ESO, Investigación en educación matemática XII, actas del XII simposio de la Sociedad Española de Investigación en Educación Matemática, (2008)
[7]  
DeBellis V.A., Goldin G.A., Affect and meta-affect in mathematical problem solving: a representational perspective, Educational Studies in Mathematics, 63, 2, pp. 131-147, (2006)
[8]  
Duval R., Les conditions cognitives de l’apprentissage de la géométrie: développement de la visualisation, différenciation des raisonnements et coordination de leur fonctionnements, Annales de Didactique et de Sciences Cognitives, 10, pp. 5-53, (2005)
[9]  
Evans J., Adults’ Mathematical thinking and emotions, (2000)
[10]  
Garcia M.M., Evolución de actitudes y competencias matemáticas en estudiantes de secundaria al introducir GeoGebra en el aula, (2011)