Determination of f+K(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_+^K(0)$$\end{document} and extraction of |Vcs|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_{cs}|$$\end{document} from semileptonic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} decays

被引:0
|
作者
Y. Fang
G. Rong
H. L. Ma
J. Y. Zhao
机构
[1] Institute of High Energy Physics,
来源
The European Physical Journal C | 2015年 / 75卷 / 1期
关键词
Form Factor; Semileptonic Decay; Belle Experiment; CLEO Collaboration; Lattice Quantum Chromodynamics;
D O I
10.1140/epjc/s10052-014-3226-3
中图分类号
学科分类号
摘要
By globally analyzing all existing measured branching fractions and partial rates in different four momentum transfer-squared q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^2$$\end{document} bins of D→Ke+νe\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\rightarrow Ke^+\nu _e$$\end{document} decays, we obtain the product of the form factor and magnitude of Cabibbo–Kobayashi–Maskawa matrix element Vcs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{cs}$$\end{document} to be f+K(0)|Vcs|=0.717±0.004\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_+^K(0)|V_{cs}|=0.717\pm 0.004$$\end{document}. With this product, we determine the D→K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\rightarrow K$$\end{document} semileptonic form factor f+K(0)=0.737±0.004±0.000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_+^K(0)=0.737\pm 0.004\pm 0.000$$\end{document} in conjunction with the value of |Vcs|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_{cs}|$$\end{document} determined from the standard model global fit. Alternately, with the product together with the input of the form factor f+K(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_+^K(0)$$\end{document} calculated in lattice quantum chromodynamics (LQCD) recently, we extract |Vcs|D→Ke+νe=0.962±0.005±0.014\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_{cs}|^{D\rightarrow Ke^+\nu _e}=0.962\pm 0.005\pm 0.014$$\end{document}, where the error is still dominated by the uncertainty of the form factor calculated in LQCD. Combining the |Vcs|Ds+→ℓ+νℓ=1.012±0.015±0.009\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_{cs}|^{D_s^+\rightarrow \ell ^+\nu _\ell }=1.012\pm 0.015\pm 0.009$$\end{document} extracted from all existing measurements of Ds+→ℓ+νℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^+_s\rightarrow \ell ^+\nu _\ell $$\end{document} decays and |Vcs|D→Ke+νe=0.962±0.005±0.014\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_{cs}|^{D\rightarrow Ke^+\nu _e}=0.962\pm 0.005\pm 0.014$$\end{document} together, we find the most precisely determined |Vcs|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_{cs}|$$\end{document} to be |Vcs|=0.983±0.011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_{cs}|=0.983\pm 0.011$$\end{document}, which improves the accuracy of the PDG’2014 value |Vcs|PDG′2014=0.986±0.016\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|V_{cs}|^\mathrm{PDG'2014}=0.986\pm 0.016$$\end{document} by 45%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$45\,\%$$\end{document}.
引用
收藏
相关论文
共 50 条