A property of the defining equations for the Lie algebra in the group classification problem for wave equations

被引:0
|
作者
S. V. Khabirov
机构
[1] Ufa Scientific Centers of the Russian Academy of Sciences,Institute of Mechanics
来源
Siberian Mathematical Journal | 2009年 / 50卷
关键词
symmetries of differential equations; group classification; defining equations of the admissible Lie algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We solve the group classification problem for nonlinear hyperbolic systems of differential equations. The admissible continuous group of transformations has the Lie algebra of dimension less than 5. This main statement follows from the principal property of the defining equations of the admissible Lie algebra: the commutator of two solutions is a solution. Using equivalence transformations we classify nonlinear systems in accordance with the well-known Lie algebra structures of dimension 3 and 4.
引用
收藏
页码:515 / 532
页数:17
相关论文
共 50 条
  • [21] Group classification of variable coefficient generalized Kawahara equations
    Kuriksha, Oksana
    Posta, Severin
    Vaneeva, Olena
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (04)
  • [22] Group classification of quasilinear elliptic-type equations. II. Invariance under solvable Lie algebras
    Lahno V.I.
    Spichak S.V.
    Ukrainian Mathematical Journal, 2011, 63 (2) : 236 - 253
  • [23] Group classification of Schrodinger equations with position dependent mass
    Nikitin, A. G.
    Zasadko, T. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (36)
  • [24] Lie Reduction and Conditional Symmetries of Some Variable Coefficient Nonlinear Wave Equations
    Huang Ding-Jiang
    Zhou Shui-Geng
    Mei Jian-Qin
    Zhang Hong-Qing
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (01) : 1 - 5
  • [25] On a Lie Group Characterization of Quasi-local Symmetries of Nonlinear Evolution Equations
    Zhdanov, Renat
    JOURNAL OF LIE THEORY, 2010, 20 (02) : 375 - 392
  • [26] Group classification of a family of second-order differential equations
    Ndogmo, J. C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (01) : 242 - 254
  • [27] Group classification of dynamics equations of self-gravitating gas
    Adarchenko, V. A.
    Panov, A. V.
    Voronin, S. M.
    Klebanov, I. I.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 76 (109-115): : 109 - 115
  • [28] Enhanced preliminary group classification of a class of generalized diffusion equations
    Cardoso-Bihlo, Elsa Dos Santos
    Bihlo, Alexander
    Popovych, Roman O.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) : 3622 - 3638
  • [29] Group classification of dynamics equations of self-gravitating gas
    Adarchenko, V. A.
    Panov, A., V
    Voronin, S. M.
    Klebanov, I. I.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 77 : 18 - 24
  • [30] Group properties of generalized quasi-linear wave equations
    Huang, Ding-jiang
    Zhou, Shuigeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) : 460 - 472