Second-order Lagrangians admitting a first-order Hamiltonian formalism

被引:0
作者
E. Rosado María
J. Muñoz Masqué
机构
[1] Escuela Técnica Superior de Arquitectura,Departamento de Matemática Aplicada
[2] UPM,Instituto de Tecnologías Físicas y de la Información
[3] CSIC,undefined
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2018年 / 197卷
关键词
Hilbert–Einstein Lagrangian; Hamilton–Cartan formalism; Jacobi fields; Jet bundles; Poincaré–Cartan form; Presymplectic structure; Primary 58E30; Secondary 58A20; 83C05;
D O I
暂无
中图分类号
学科分类号
摘要
Second-order Lagrangian densities admitting a first-order Hamiltonian formalism are studied; namely, (1) for each second-order Lagrangian density on an arbitrary fibred manifold p:E→N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p:E\rightarrow N$$\end{document} the Poincaré–Cartan form of which is projectable onto J1E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J^1E$$\end{document}, by using a new notion of regularity previously introduced, a first-order Hamiltonian formalism is developed for such a class of variational problems; (2) the existence of first-order equivalent Lagrangians is discussed from a local point of view as well as global; (3) this formalism is then applied to classical Hilbert–Einstein Lagrangian and a generalization of the BF theory. The results suggest that the class of problems studied is a natural variational setting for GR.
引用
收藏
页码:357 / 397
页数:40
相关论文
共 50 条
  • [1] Anderson IM(1980)On the existence of global variational principles Am. J. Math. 102 781-868
  • [2] Duchamp T(1991)A Kallosh theorem for BF-type topological field theory Phys. Lett. B 273 67-73
  • [3] Birmingham D(2014)First-order equivalent to Einstein–Hilbert Lagrangian J. Math. Phys. 55 082501-1390
  • [4] Gibbs R(2011)Reconsiderations on the formulation of general relativity based on Riemannian structures Gen. Relativ. Gravit. 43 1365-6016
  • [5] Mokhtari S(2000)Second-order Lagrangians admitting a second-order Hamilton-Cartan formalism J. Phys. A Math. Gen. 33 6003-824
  • [6] Castrillón López M(1986)The effective gravitational Lagrangian and the energy-momentum tensor in the inflationary universe Class. Quantum Gravity 3 817-985
  • [7] Muñoz Masqué J(1990)Covariant first-order Lagrangians, energy-density and superpotentials in general relativity Gen. Relativ. Gravit. 22 965-246
  • [8] Rosado María ER(1974)The Poincaré–Cartan invariant in the calculus of variations Symp. Math. 14 219-351
  • [9] Cartas-Fuentevilla R(1988)Cosmology in ten dimensions with the generalised gravitational Lagrangian Class. Quantum Gravity 5 339-267
  • [10] Escalante-Hernandez A(1973)The Hamilton–Cartan formalism in the calculus of variations Ann. Inst. Fourier (Grenoble) 23 203-1447