Detecting Common Gene Expression Patterns in Multiple Cancer Outcome Entities

被引:0
作者
Xinan Yang
Stefan Bentink
Rainer Spang
机构
[1] MPI for Molecular Genetics,Computational Diagnostics Group, Department of Computational Molecular Biology
[2] Southeast University,State Key Laboratory of Bioelectronics
来源
Biomedical Microdevices | 2005年 / 7卷
关键词
molecular cancer mechanisms; meta-analysis; computational diagnostics; microarrays; bioinformatics;
D O I
暂无
中图分类号
学科分类号
摘要
Most oncological microarray studies focus on molecular distinctions in different cancer entities. Recently, researchers started using microarrays for investigating molecular commonalities of multiple cancer types. This poses novel bioinformatics challenges.
引用
收藏
页码:247 / 251
页数:4
相关论文
共 50 条
  • [21] Parallel clustering algorithm of gene expression patterns
    Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, Beijing 100080, China
    不详
    Jisuanji Xuebao, 2007, 2 (311-316):
  • [22] The expression and clinical significance of microRNAs in colorectal cancer detecting
    Yang, Xiaoyu
    Zhong, Jiateng
    Ji, Yinghua
    Li, Jinsong
    Jian, Yu
    Zhang, Jinghang
    Yang, Wancai
    TUMOR BIOLOGY, 2015, 36 (04) : 2675 - 2684
  • [23] Detecting differential gene expression with a semiparametric hierarchical mixture method
    Newton, MA
    Noueiry, A
    Sarkar, D
    Ahlquist, P
    BIOSTATISTICS, 2004, 5 (02) : 155 - 176
  • [24] MiR-34a Expression Has an Effect for Lower Risk of Metastasis and Associates with Expression Patterns Predicting Clinical Outcome in Breast Cancer
    Peurala, Hanna
    Greco, Dario
    Heikkinen, Tuomas
    Kaur, Sippy
    Bartkova, Jirina
    Jamshidi, Maral
    Aittomaki, Kristiina
    Heikkila, Paivi
    Bartek, Jiri
    Blomqvist, Carl
    Butzow, Ralf
    Nevanlinna, Heli
    PLOS ONE, 2011, 6 (11):
  • [25] Prediction of Tumor Outcome Based on Gene Expression Data
    Liu Juan 1
    2. State Key Laboratory of Software Engineering
    3. Department of Frontier Informatics
    Wuhan University Journal of Natural Sciences, 2004, (02) : 177 - 182
  • [26] A Hybrid One-Way ANOVA Approach for the Robust and Efficient Estimation of Differential Gene Expression with Multiple Patterns
    Mollah, Mohammad Manir Hossain
    Jamal, Rahman
    Mokhtar, Norfilza Mohd
    Harun, Roslan
    Mollah, Md. Nurul Haque
    PLOS ONE, 2015, 10 (09):
  • [27] Dynamism in gene expression across multiple studies
    Morgan, Alexander A.
    Dudley, Joel T.
    Deshpande, Tarangini
    Butte, Atul J.
    PHYSIOLOGICAL GENOMICS, 2010, 40 (03) : 128 - 140
  • [28] Genetic and gene expression signatures in multiple sclerosis
    Patsopoulos, Nikolaos A.
    De Jager, Philip L.
    MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (05) : 576 - 581
  • [29] Predicting Patterns of Gene Expression During Drosophila Embryogenesis
    Golan, Rotem
    Jacob, Christian
    Grewal, Savraj
    Denzinger, Joerg
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 269 - 276
  • [30] Mining gene expression patterns for the discovery of overlapping clusters
    Ma, Patrick C. H.
    Chan, Keith C. C.
    EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, PROCEEDINGS, 2008, 4973 : 117 - 128