Hamiltonian Formulation of Systems Described Using Fractional Singular Lagrangian

被引:0
作者
Chuanjing Song
Om Prakash Agrawal
机构
[1] Suzhou University of Science and Technology,School of Mathematical Sciences
[2] Southern Illinois University at Carbondale,Department of Mechanical Engineering and Energy Processes
来源
Acta Applicandae Mathematicae | 2021年 / 172卷
关键词
Primary constraint; Constrained Hamilton equation; Poisson bracket; Fractional derivative; 37J06; 70H05; 70H03;
D O I
暂无
中图分类号
学科分类号
摘要
Fractional singular systems defined using mixed integer and Caputo fractional derivative are analyzed. Using these derivatives, fractional primary constraints, fractional constrained Hamilton equations and the corresponding Poisson brackets are established. Several examples are presented to demonstrate applications of the formulations.
引用
收藏
相关论文
共 31 条
  • [11] A FORMULATION OF HAMILTONIAN MECHANICS USING GEOMETRIC ALGEBRA
    E. T. Abou El Dahab
    Advances in Applied Clifford Algebras, 2000, 10 (2) : 217 - 223
  • [12] Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations
    Herzallah, Mohamed A. E.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2009, 58 (1-2) : 385 - 391
  • [13] OPTIMALITY CONDITIONS OF SINGULAR CONTROLS FOR SYSTEMS WITH CAPUTO FRACTIONAL DERIVATIVES
    Yusubov, Shakir Sh
    Mahmudov, Elimhan N.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (01) : 246 - 264
  • [14] A NOTE ON THE INCOMPATIBILITY OF AUTONOMOUS FRACTIONAL DIFFERENTIAL SYSTEMS AND FRACTIONAL DERIVATIVES WITH NON-SINGULAR KERNELS
    Douaifia, Redouane
    Alharthi, Mathkar
    Bendoukha, Samir
    Abdelmalek, Salem
    Ali, Emad
    Barhoumi, Nabil
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
  • [15] Optimal solutions for singular linear systems of Caputo fractional differential equations
    Dassios, Ioannis
    Baleanu, Dumitru
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 7884 - 7896
  • [16] On optimal control problem subject to fractional order discrete time singular systems
    Chiranjeevi, Tirumalasetty
    Biswas, Raj Kumar
    Devarapalli, Ramesh
    Babu, Naladi Ram
    Garcia Marquez, Fausto Pedro
    ARCHIVES OF CONTROL SCIENCES, 2021, 31 (04) : 849 - 863
  • [17] Necessary optimality conditions for quasi-singular controls for systems with Caputo fractional derivatives
    Yusubov, Shakir Sh.
    Mahmudov, Elimhan N.
    ARCHIVES OF CONTROL SCIENCES, 2023, 33 (03) : 463 - 496
  • [18] Deterministic and Random Vibration of Linear Systems with Singular Parameter Matrices and Fractional Derivative Terms
    Pirrotta, A.
    Kougioumtzoglou, I. A.
    Di Matteo, A.
    Fragkoulis, V. C.
    Pantelous, A. A.
    Adam, C.
    JOURNAL OF ENGINEERING MECHANICS, 2021, 147 (06)
  • [19] First passage failure of MDOF quasi-integrable Hamiltonian systems with fractional derivative damping
    Lincong Chen
    Qingqu Zhuang
    Weiqiu Zhu
    Acta Mechanica, 2011, 222 : 245 - 260
  • [20] Quantization of fractional systems using WKB approximation
    Rabei, Eqab M.
    Muslih, Sami I.
    Baleanu, Dumitru
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (04) : 807 - 811