Theta Functions and Adiabatic Curvature on an Elliptic Curve

被引:0
作者
Ching-Hao Chang
Jih-Hsin Cheng
I-Hsun Tsai
机构
[1] Xiamen University Malaysia,Department of Mathematics
[2] Institute of Mathematics,Department of Mathematics
[3] Academia Sinica and NCTS,undefined
[4] National Taiwan University,undefined
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Theta functions; Poincaré line bundle; Connection; Curvature; Primary 32G05; Secondary 32S45; 32C35; 32C25;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a complex torus, Lμ^→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{\hat{\mu }}}\rightarrow M$$\end{document} be positive line bundles parametrized by μ^∈Pic0(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\mu }}\in \mathrm{Pic}^0(M)$$\end{document}, and E→Pic0(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\rightarrow \mathrm{Pic}^0(M)$$\end{document} be a vector bundle with E|μ^≅H0(M,Lμ^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E|_{{\hat{\mu }}}\cong H^0(M, L_{{\hat{\mu }}})$$\end{document}. We endow the total family {Lμ^}μ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{L_{{\hat{\mu }}}\}_{{\hat{\mu }}}$$\end{document} with a Hermitian metric that induces the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-metric on H0(M,Lμ^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^0(M, L_{{\hat{\mu }}})$$\end{document} hence on E. Using theta functions {θm}m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\theta _m\}_{m}$$\end{document} on M×M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\times M$$\end{document} as a family of functions on the first factor M with parameters in the second factor M, our computation of the full curvature tensor ΘE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta _E$$\end{document} of E with respect to this L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-metric shows that ΘE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta _E$$\end{document} is essentially an identity matrix multiplied by a constant 2-form, which yields in particular the adiabatic curvature c1(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_1(E)$$\end{document}. After a natural base change M→M^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\rightarrow {\hat{M}}$$\end{document} so that E×M^M:=E′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\times _{{\hat{M}}} M:=E'$$\end{document}, we obtain that E′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E'$$\end{document} splits holomorphically into a direct sum of line bundles each of which is isomorphic to Lμ^=0∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{{\hat{\mu }}=0}^*$$\end{document}.
引用
收藏
相关论文
共 18 条
  • [1] Abreu LD(2015)Discrete coherent states for higher Landau levels Ann. Phys. 363 337-353
  • [2] Balazs P(1991)Geometric quantization of Chern–Simons gauge theory J. Diff. Geom. 33 787-902
  • [3] de Gosson M(2009)Curvature of vector bundles associated to holomorphic fibrations Ann. Math. 169 531-560
  • [4] Mouayn Z(1986)The Atiyah–Singer index theorem for families of Dirac operators: two heat equation proofs Invent. Math. 83 91-151
  • [5] Axelrod S(1988)Analytic torsion and holomorphic determinant bundles III. Quillen metrics and holomorphic determinants Commun. Math. Phys. 115 301-351
  • [6] Pietra SD(1990)Flat connections and geometric quantization Commun. Math. Phys. 131 347-380
  • [7] Witten E(1979)Toward the inversion of abelian integrals, II Am. J. Math. 101 184-202
  • [8] Berndtsson B(2006)Holomorphic spectral geometry of magnetic Schrödinger operators on Riemann surfaces Differ. Geom. Appl. 24 288-310
  • [9] Bismut J-M(2006)Fourier-Mukai transform and adiabatic curvature of spectral bundles for Landau Hamiltonians on Riemann surfaces Commun. Math. Phys. 265 373-396
  • [10] Bismut J-M(2004)-metrics, projective flatness and families of polarized Abelian varieties Trans. Am. Math. Soc. 356 2685-2707