Strain rate dependence of spall strength for solid and molten lead and tin

被引:1
|
作者
Alexander E. Mayer
Polina N. Mayer
机构
[1] Chelyabinsk State University,
[2] South Ural State University (National Research University),undefined
来源
关键词
Spall strength; Strain rate dependence; Solid and molten metal; Lead; Tin; Unwettable inclusions; Molecular dynamics; Mechanical model;
D O I
暂无
中图分类号
学科分类号
摘要
Dynamic tensile (spall) fracture of pure Pb and Sn in solid and molten states is investigated by MD simulations. The influence of unwettable inclusions on the spall strength is revealed. Mechanical model of fracture is fitted to MD data at the strain rate 109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {9}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document} and used for calculation of the rate dependencies of spall strength in the range from 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {4}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document} to 109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {9}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document} in comparison with the experimental data. The model takes into account homogeneous nucleation of pores, activation of pores on unwettable inclusions or other heterogeneities and change in pore size, which is viscous for melt and elastic-plastic for solid. In the case of pure uniform material, the homogeneous nucleation gives a slow decrease in spall strength with decreasing strain rate; the calculated values significantly exceed experimental results for moderate strain rates of 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {4}}$$\end{document}–105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {5}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document}. Accounting of unwettable inclusions removes this contradiction and provides correspondence to experimental data. A power-law size distribution of inclusions gives in the case of melt the power-law dependence of spall strength on strain rate that coincides with the experimental data for molten Sn. In the case of solid metal, the spall strength at moderate strain rates is determined by the yield strength. Therefore, the initial power law decrease in the spall strength is replaced by almost constant level at moderate strain rates. This behavior corresponds to the existing experimental data for solid Pb. Transfer to the homogeneous nucleation mode takes place for solid and molten metals at ultra-high strain rates, when the concentration of pores activated on the existing heterogeneities is not enough for the stress relaxation.
引用
收藏
页码:171 / 195
页数:24
相关论文
共 50 条
  • [41] Dynamic Strength of Tin and Lead Melts
    Kanel, G. I.
    Savinykh, A. S.
    Garkushin, G. V.
    Razorenov, S. V.
    JETP LETTERS, 2015, 102 (08) : 548 - 551
  • [42] DIFFUSION OF SILVER IN MOLTEN LEAD-TIN ALLOYS
    INAGAKI, S
    KADO, S
    NIWA, K
    TRANSACTIONS OF THE JAPAN INSTITUTE OF METALS, 1966, 7 (03): : 203 - &
  • [43] EFFECT OF STRAIN RATE ON FATIGUE OF LOW-TIN LEAD-BASE SOLDER
    VAYNMAN, S
    IEEE TRANSACTIONS ON COMPONENTS HYBRIDS AND MANUFACTURING TECHNOLOGY, 1989, 12 (04): : 469 - 472
  • [44] OBSERVATIONS OF STRAIN RATE TRANSIENTS IN THE SUPERPLASTIC LEAD-TIN EUTECTIC ALLOY.
    Alden, T.H.
    1600, (21):
  • [45] Strain-rate and temperature dependence of plastic deformation in white tin single crystals
    Nagasaka, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1999, 38 (1A): : 171 - 175
  • [46] Strain-rate and temperature dependence of plastic deformation in white tin single crystals
    Nagasaka, Muneo
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 1999, 38 (1 A): : 171 - 175
  • [47] Nonmonotonic Rate Dependence of the Dynamic Yield Strength of Alloys under High Strain Rate Deformation
    Malashenko, V. V.
    PHYSICS OF THE SOLID STATE, 2021, 63 (10) : 1462 - 1464
  • [48] Nonmonotonic Rate Dependence of the Dynamic Yield Strength of Alloys under High Strain Rate Deformation
    V. V. Malashenko
    Physics of the Solid State, 2021, 63 : 1462 - 1464
  • [49] Effect of peak stress and tensile strain-rate on spall in tantalum
    Jones, D. R.
    Fensin, S. J.
    Martinez, D. T.
    Trujillo, C. P.
    Gray, G. T., III
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (08)
  • [50] A statistical model and experimental study of the strain rate and temperature dependence of the strength of fibers
    Wang, Z
    Xia, YM
    Yang, BC
    APPLIED COMPOSITE MATERIALS, 1996, 3 (02) : 89 - 101