Strain rate dependence of spall strength for solid and molten lead and tin

被引:1
|
作者
Alexander E. Mayer
Polina N. Mayer
机构
[1] Chelyabinsk State University,
[2] South Ural State University (National Research University),undefined
来源
关键词
Spall strength; Strain rate dependence; Solid and molten metal; Lead; Tin; Unwettable inclusions; Molecular dynamics; Mechanical model;
D O I
暂无
中图分类号
学科分类号
摘要
Dynamic tensile (spall) fracture of pure Pb and Sn in solid and molten states is investigated by MD simulations. The influence of unwettable inclusions on the spall strength is revealed. Mechanical model of fracture is fitted to MD data at the strain rate 109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {9}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document} and used for calculation of the rate dependencies of spall strength in the range from 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {4}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document} to 109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {9}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document} in comparison with the experimental data. The model takes into account homogeneous nucleation of pores, activation of pores on unwettable inclusions or other heterogeneities and change in pore size, which is viscous for melt and elastic-plastic for solid. In the case of pure uniform material, the homogeneous nucleation gives a slow decrease in spall strength with decreasing strain rate; the calculated values significantly exceed experimental results for moderate strain rates of 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {4}}$$\end{document}–105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {5}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document}. Accounting of unwettable inclusions removes this contradiction and provides correspondence to experimental data. A power-law size distribution of inclusions gives in the case of melt the power-law dependence of spall strength on strain rate that coincides with the experimental data for molten Sn. In the case of solid metal, the spall strength at moderate strain rates is determined by the yield strength. Therefore, the initial power law decrease in the spall strength is replaced by almost constant level at moderate strain rates. This behavior corresponds to the existing experimental data for solid Pb. Transfer to the homogeneous nucleation mode takes place for solid and molten metals at ultra-high strain rates, when the concentration of pores activated on the existing heterogeneities is not enough for the stress relaxation.
引用
收藏
页码:171 / 195
页数:24
相关论文
共 50 条
  • [31] Dependence of strength characteristics of aluminum alloys on strain rate under tension
    Evstifeev, Alexey
    Chevrychkina, Anastasiia
    Petrov, Yuri
    Atrochenko, Svetlana
    ECF22 - LOADING AND ENVIRONMENTAL EFFECTS ON STRUCTURAL INTEGRITY, 2018, 13 : 886 - 889
  • [32] Yield strength dependence on strain rate of molybdenum-alloy nanofibers
    Loya, P. E.
    Xia, Y. Z.
    Peng, C.
    Bei, H.
    Zhang, P.
    Zhang, J.
    George, E. P.
    Gao, Y. F.
    Lou, J.
    APPLIED PHYSICS LETTERS, 2014, 104 (25)
  • [33] Strain rate dependence on the shear strength of unidirectional carbon carbon composites
    Ishiguro, Y
    Akatsu, T
    Tanabe, Y
    Yasuda, E
    TIME DEPENDENT MECHANICAL RESPONSE OF ENGINEERING CERAMICS: FROM PICO-SECOND TO MILLION YEARS, 1999, 4 : 139 - 141
  • [34] Strain rate dependence of strengthening mechanisms in ultrahigh strength lath martensite
    Liu, H.
    Shang, X. K.
    He, B. B.
    Liang, Z. Y.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2023, 161
  • [35] Strain-Rate Dependence of Strength of the Gulf of Mexico Soft Sediments
    Abelev, Andrei
    Valent, Philip
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2013, 38 (01) : 25 - 31
  • [36] TEMPERATURE AND STRAIN-RATE DEPENDENCE OF SHEAR STRENGTH OF MILD STEEL
    CAMPBELL, JD
    FERGUSON, WG
    PHILOSOPHICAL MAGAZINE, 1970, 21 (169) : 63 - +
  • [37] Strain rate dependence of strength-differential effect in two steels
    Meyer, LW
    Abdel-Malek, S
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P9): : 63 - 68
  • [38] Effect of tensile strain rate on spall fracture in 20 steel
    Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
    不详
    Baozha Yu Chongji, 2007, 3 (193-197):
  • [39] DEPENDENCE OF SPALL STRENGTH OF METALS ON THE AMPLITUDE OF A SHOCK-WAVE LOAD
    OGORODNIKOV, VA
    IVANOV, AG
    TYUNKIN, ES
    GRIGOREV, VA
    KHOKHLOV, AA
    COMBUSTION EXPLOSION AND SHOCK WAVES, 1992, 28 (01) : 88 - 92
  • [40] Dynamic strength of tin and lead melts
    G. I. Kanel
    A. S. Savinykh
    G. V. Garkushin
    S. V. Razorenov
    JETP Letters, 2015, 102 : 548 - 551