Strain rate dependence of spall strength for solid and molten lead and tin

被引:1
|
作者
Alexander E. Mayer
Polina N. Mayer
机构
[1] Chelyabinsk State University,
[2] South Ural State University (National Research University),undefined
来源
关键词
Spall strength; Strain rate dependence; Solid and molten metal; Lead; Tin; Unwettable inclusions; Molecular dynamics; Mechanical model;
D O I
暂无
中图分类号
学科分类号
摘要
Dynamic tensile (spall) fracture of pure Pb and Sn in solid and molten states is investigated by MD simulations. The influence of unwettable inclusions on the spall strength is revealed. Mechanical model of fracture is fitted to MD data at the strain rate 109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {9}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document} and used for calculation of the rate dependencies of spall strength in the range from 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {4}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document} to 109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {9}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document} in comparison with the experimental data. The model takes into account homogeneous nucleation of pores, activation of pores on unwettable inclusions or other heterogeneities and change in pore size, which is viscous for melt and elastic-plastic for solid. In the case of pure uniform material, the homogeneous nucleation gives a slow decrease in spall strength with decreasing strain rate; the calculated values significantly exceed experimental results for moderate strain rates of 104\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {4}}$$\end{document}–105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\mathrm {5}}$$\end{document}s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {s}^{\mathrm {-1}}$$\end{document}. Accounting of unwettable inclusions removes this contradiction and provides correspondence to experimental data. A power-law size distribution of inclusions gives in the case of melt the power-law dependence of spall strength on strain rate that coincides with the experimental data for molten Sn. In the case of solid metal, the spall strength at moderate strain rates is determined by the yield strength. Therefore, the initial power law decrease in the spall strength is replaced by almost constant level at moderate strain rates. This behavior corresponds to the existing experimental data for solid Pb. Transfer to the homogeneous nucleation mode takes place for solid and molten metals at ultra-high strain rates, when the concentration of pores activated on the existing heterogeneities is not enough for the stress relaxation.
引用
收藏
页码:171 / 195
页数:24
相关论文
共 50 条
  • [21] DISSOLUTION OF SOLID COPPER INTO MOLTEN TIN-LEAD ALLOYS UNDER STATIC CONDITIONS
    SHOJI, Y
    UCHIDA, S
    ARIGA, T
    TRANSACTIONS OF THE JAPAN INSTITUTE OF METALS, 1980, 21 (12): : 819 - 823
  • [22] Stress and Strain Rate Effects on Incipient Spall in Tantalum
    Jones, David R.
    Fensin, Saryu J.
    Trujillo, Carl P.
    Martinez, Daniel T.
    Gray, George T., III
    12TH INTERNATIONAL CONFERENCE ON THE MECHANICAL AND PHYSICAL BEHAVIOUR OF MATERIALS UNDER DYNAMIC LOADING (DYMAT 2018), 2018, 183
  • [23] Strain-rate dependence of the tensile strength of glass fibers
    Yoshihiko Arao
    Norihiko Taniguchi
    Tsuyoshi Nishiwaki
    Norio Hirayama
    Hiroyuki Kawada
    Journal of Materials Science, 2012, 47 : 4895 - 4903
  • [24] Strain-rate dependence of the tensile strength of glass fibers
    Arao, Yoshihiko
    Taniguchi, Norihiko
    Nishiwaki, Tsuyoshi
    Hirayama, Norio
    Kawada, Hiroyuki
    JOURNAL OF MATERIALS SCIENCE, 2012, 47 (12) : 4895 - 4903
  • [25] REACTION OF SOLID IRON WITH MOLTEN TIN
    ISHIDA, T
    TRANSACTIONS OF THE JAPAN INSTITUTE OF METALS, 1973, 14 (01): : 37 - 44
  • [26] The activities of molten alloys of thallium with tin and with lead
    Hildebrand, JH
    Sharma, JN
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1929, 51 (1-4) : 462 - 471
  • [27] OBSERVATIONS OF STRAIN RATE TRANSIENTS IN THE SUPERPLASTIC LEAD-TIN EUTECTIC ALLOY
    ALDEN, TH
    SCRIPTA METALLURGICA, 1987, 21 (06): : 735 - 738
  • [28] High dissolution rate of solid materials in molten lead-free solders
    Takemoto, Tadashi
    ADVANCED WELDING AND MICRO JOINING / PACKAGING FOR THE 21ST CENTURY, 2008, 580-582 : 205 - 208
  • [29] DISSOLUTION OF SOLID COPPER CYLINDER IN MOLTEN TIN-LEAD ALLOYS UNDER DYNAMIC CONDITIONS
    SHOJI, Y
    UCHIDA, S
    ARIGA, T
    METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1982, 13 (03): : 439 - 445
  • [30] THE SOLUBILITY OF TIN IN SOLID LEAD
    CAHN, JW
    TREAFTIS, HN
    TRANSACTIONS OF THE AMERICAN INSTITUTE OF MINING AND METALLURGICAL ENGINEERS, 1960, 218 (02): : 376 - 377