Birkhoff’s theorem in f(R) theory of gravity

被引:0
作者
P. J. Ravindranath
Y. Aditya
D. R. K. Reddy
M. V. Subba Rao
机构
[1] Rajeev Gandhi Memorial College of Engineering and Technology,Department of Mathematics
[2] ANITS (A),Department of Mathematics
[3] Andhra University,Department of Applied Mathematics
来源
The European Physical Journal Plus | / 133卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Birkhoff’s theorem in general relativity states that every spherically symmetric solution of Einstein field equations in vacuum is either static or Schwarzschild. This theorem has been established in the scalar-tensor theories of gravity by Reddy (J. Phys. A 6, 1867 (1973)). In this paper, we prove this theorem in f(R) theory of gravity (where R Ricci scalar) when the scalaron Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Phi$\end{document}(R) of the theory is time-independent only. However, no attention is given to the order of the f(R) theory. Here it is important to note that the Birkhoff theorem in f(R) gravity states only that if R is time-independent, the spherical solution is static (not Schwarzschild).
引用
收藏
相关论文
共 104 条
  • [1] Riess A.G.(1998)Locally rotationally symmetric Bianchi type-I string cosmological models in f(R) theory of gravity Astrophys. J. 116 1009-undefined
  • [2] Perlmutter S.(1999)undefined Astrophys. J. 517 5-undefined
  • [3] Spergel D.N.(2003)undefined Astrophys. J. Suppl. 148 175-undefined
  • [4] Tegmartk M.(2004)undefined Phys. Rev. D 69 103501-undefined
  • [5] Brans C.H.(1961)undefined Phys. Rev. 124 925-undefined
  • [6] Dicke R.H.(1986)undefined Phys. Lett. A 113 467-undefined
  • [7] Saez D.(2003)undefined Recent Res. Dev. Astron. Astrophys. 1 625-undefined
  • [8] Ballester V.J.(2003)undefined Phys. Rev. D 68 123512-undefined
  • [9] Capozziello S.(2011)undefined Phys. Rev. D 84 024020-undefined
  • [10] Carloni S.(2007)undefined Int. J. Geom. Methods Mod. Phys. 4 115-undefined