Genome-wide analysis of PHD family transcription factors in carrot (Daucus carota L.) reveals evolution and response to abiotic stress

被引:0
|
作者
Xue-Jun Wu
Meng-Yao Li
Feng Que
Feng Wang
Zhi-Sheng Xu
Ai-Sheng Xiong
机构
[1] Nanjing Agricultural University,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture
来源
关键词
PHD transcription factor; Phylogenetic tree; Evolution; Abiotic stress; Carrot;
D O I
暂无
中图分类号
学科分类号
摘要
The plant homeodomain (PHD)-finger proteins are universally found in eukaryotes. In animals, the structure and function of PHD-finger proteins have been well studied. The PHD family is one of the important transcription factor (TF) families that have crucial roles in different biological processes in plants. In this study, 106 putative TFs were identified from carrot based on the carrot genomic and transcriptomic sequences. According to the phylogenetic comparisons in Arabidopsis and Populus trichocarpa, the PHD proteins were distinguished into 11 groups (A–J, L). The amino acid sequence, phylogenetic tree, physical characterizations, and conserved motifs of the PHD family TFs were predicted and analyzed. The analysis on the PHD family TFs in different species revealed that the number of PHD TFs in different species had a close relationship with the evolution of plant. The expression profiles of the four selected DcPHD genes were detected in leaf, root, and stem of carrot. Gene expression appeared to be tissue-specific in carrot. To analyze the response of DcPHD genes to abiotic stress, the expression profiles of the four DcPHD genes that were selected from the subgroup I were also detected through quantitative real time-PCR under abiotic stress treatments. In carrot, the expression levels of some genes were up-regulated, whereas the others were down-regulated, such as DcPHD-I-15 under heat stress treatment at 1 h. Results show that different DcPHD genes had different relative expression levels in the same condition. In this study, we mainly introduced the progress in the research on the structure and function of PHD TFs in carrot. This study may offer rich information for in depth research on PHD factors, as well as becoming a useful reference for PHD evolutionary relationship in plants. Results provide novel insights into the stress responses of DcPHD genes and promote a better understanding of the construction and function of this gene in carrot.
引用
收藏
相关论文
共 50 条
  • [1] Genome-wide analysis of PHD family transcription factors in carrot (Daucus carota L.) reveals evolution and response to abiotic stress
    Wu, Xue-Jun
    Li, Meng-Yao
    Que, Feng
    Wang, Feng
    Xu, Zhi-Sheng
    Xiong, Ai-Sheng
    ACTA PHYSIOLOGIAE PLANTARUM, 2016, 38 (03) : 1 - 15
  • [2] Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress
    Li, Meng-Yao
    Xu, Zhi-Sheng
    Huang, Ying
    Tian, Chang
    Wang, Feng
    Xiong, Ai-Sheng
    MOLECULAR GENETICS AND GENOMICS, 2015, 290 (06) : 2049 - 2061
  • [3] Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress
    Meng-Yao Li
    Zhi-Sheng Xu
    Ying Huang
    Chang Tian
    Feng Wang
    Ai-Sheng Xiong
    Molecular Genetics and Genomics, 2015, 290 : 2049 - 2061
  • [4] Dof transcription factors in carrot: genome-wide analysis and their response to abiotic stress
    Wei Huang
    Ying Huang
    Meng-yao Li
    Feng Wang
    Zhi-sheng Xu
    Ai-sheng Xiong
    Biotechnology Letters, 2016, 38 : 145 - 155
  • [5] Dof transcription factors in carrot: genome-wide analysis and their response to abiotic stress
    Huang, Wei
    Huang, Ying
    Li, Meng-yao
    Wang, Feng
    Xu, Zhi-sheng
    Xiong, Ai-sheng
    BIOTECHNOLOGY LETTERS, 2016, 38 (01) : 145 - 155
  • [6] Genome-wide analysis of NAC transcription factors and their response to abiotic stress in celery (Apium graveolens L.)
    Duan, Ao-Qi
    Yang, Xiao-Lan
    Feng, Kai
    Liu, Jie-Xia
    Xu, Zhi-Sheng
    Xiong, Ai-Sheng
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 84
  • [7] Genome-wide analysis of WRKY transcription factors and their response to abiotic stress in celery (Apium graveolens L.)
    Wu, Bei
    Li, Meng-Yao
    Xu, Zhi-Sheng
    Wang, Feng
    Xiong, Ai-Sheng
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2018, 32 (02) : 293 - 302
  • [8] Genome-wide analysis of basic helix−loop−helix family transcription factors and their role in responses to abiotic stress in carrot
    Yi-Yun Chen
    Meng-Yao Li
    Xue-Jun Wu
    Ying Huang
    Jing Ma
    Ai-Sheng Xiong
    Molecular Breeding, 2015, 35
  • [9] Genome-Wide Analysis of the GRF Family Reveals Their Involvement in Abiotic Stress Response in Cassava
    Shang, Sang
    Wu, Chunlai
    Huang, Chao
    Tie, Weiwei
    Yan, Yan
    Ding, Zehong
    Xia, Zhiqiang
    Wang, Wenquan
    Peng, Ming
    Tian, Libo
    Hu, Wei
    GENES, 2018, 9 (02)
  • [10] Genome-wide analysis of basic helix-loop-helix family transcription factors and their role in responses to abiotic stress in carrot
    Chen, Yi-Yun
    Li, Meng-Yao
    Wu, Xue-Jun
    Huang, Ying
    Ma, Jing
    Xiong, Ai-Sheng
    MOLECULAR BREEDING, 2015, 35 (05)