Quantification of pulmonary opacities using artificial intelligence in chest CT scans during SARS-CoV-2 pandemic: validation and prognostic assessment

被引:0
作者
Fernando Sánchez Montoro
María Luz Parra Gordo
Áurea Díez Tascón
Milagros Martí de Gracia
Silvia Ossaba Velez
Susana Fernández Fernández
Rebeca Gil Vallano
Kevin Stephen Acosta Velásquez
机构
[1] Hospital Universitario La Paz,Emergency Radiology
来源
Egyptian Journal of Radiology and Nuclear Medicine | / 54卷
关键词
Artificial intelligence; COVID-19; SARS-CoV-2; Pneumonia; Chest-CT scan;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 105 条
[1]  
Zu ZY(2020)Coronavirus disease 2019 (COVID-19): a perspective from China Radiology 296 E15-25
[2]  
Jiang MD(2021)Deep learning in systems medicine Brief Bioinform 22 1543-1559
[3]  
Xu PP(2018)Medical image analysis using convolutional neural networks: a review J Med Syst 42 226-1930
[4]  
Chen W(2015)Machine learning in medicine Circulation 132 1920-R236
[5]  
Ni QQ(2019)Neural network models and deep learning Curr Biol 29 R231-88
[6]  
Lu GM(2017)A survey on deep learning in medical image analysis Med Image Anal 42 60-9
[7]  
Wang H(2021)Improved 3D U-Net for COVID-19 chest CT image segmentation Sci Program 2021 1-11
[8]  
Pujos-Guillot E(2018)UNet++: a nested U-Net architecture for medical image segmentation Deep Learn Med Image Anal Multimodal Learn Clin Decis Supp 11045 3-2780
[9]  
Comte B(2021)Deep learning enables accurate diagnosis of novel Coronavirus (COVID-19) with CT images IEEE/ACM Trans Comput Biol Bioinform 18 2775-1057
[10]  
de Miranda JL(2022)A convolutional neural network-based COVID-19 detection method using chest CT images Ann Transl Med 10 333-189