Generalizable Inter-Institutional Classification of Abnormal Chest Radiographs Using Efficient Convolutional Neural Networks

被引:0
作者
Ian Pan
Saurabh Agarwal
Derek Merck
机构
[1] Brown University,Warren Alpert Medical School
[2] Rhode Island Hospital,Department of Diagnostic Imaging
来源
Journal of Digital Imaging | 2019年 / 32卷
关键词
Convolutional neural networks; Deep learning; Generalizability; Chest radiographs; Classification;
D O I
暂无
中图分类号
学科分类号
摘要
Our objective is to evaluate the effectiveness of efficient convolutional neural networks (CNNs) for abnormality detection in chest radiographs and investigate the generalizability of our models on data from independent sources. We used the National Institutes of Health ChestX-ray14 (NIH-CXR) and the Rhode Island Hospital chest radiograph (RIH-CXR) datasets in this study. Both datasets were split into training, validation, and test sets. The DenseNet and MobileNetV2 CNN architectures were used to train models on each dataset to classify chest radiographs into normal or abnormal categories; models trained on NIH-CXR were designed to also predict the presence of 14 different pathological findings. Models were evaluated on both NIH-CXR and RIH-CXR test sets based on the area under the receiver operating characteristic curve (AUROC). DenseNet and MobileNetV2 models achieved AUROCs of 0.900 and 0.893 for normal versus abnormal classification on NIH-CXR and AUROCs of 0.960 and 0.951 on RIH-CXR. For the 14 pathological findings in NIH-CXR, MobileNetV2 achieved an AUROC within 0.03 of DenseNet for each finding, with an average difference of 0.01. When externally validated on independently collected data (e.g., RIH-CXR-trained models on NIH-CXR), model AUROCs decreased by 3.6–5.2% relative to their locally trained counterparts. MobileNetV2 achieved comparable performance to DenseNet in our analysis, demonstrating the efficacy of efficient CNNs for chest radiograph abnormality detection. In addition, models were able to generalize to external data albeit with performance decreases that should be taken into consideration when applying models on data from different institutions.
引用
收藏
页码:888 / 896
页数:8
相关论文
共 50 条
  • [41] Novel convolutional neural networks for efficient classification of rotated and scaled images
    Tarasiuk, Pawel
    Szczepaniak, Piotr S.
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13) : 10519 - 10532
  • [42] Convolutional neural networks based efficient approach for classification of lung diseases
    Fatih Demir
    Abdulkadir Sengur
    Varun Bajaj
    Health Information Science and Systems, 8
  • [43] PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs
    Bilal, Anas
    Haider Khan, Ali
    Almohammadi, Khalid
    Al Ghamdi, Sami A.
    Long, Haixia
    Malik, Hassaan
    IEEE ACCESS, 2024, 12 : 150147 - 150168
  • [44] Pneumonia Classification and Analysis in Chest X-ray by Means of Convolutional Neural Networks
    Comas, Diego S.
    Amalfitano, Agustin
    Simon Gonzalez, Luciana
    Meschino, Gustavo J.
    Ballarin, Virginia L.
    ADVANCES IN BIOENGINEERING AND CLINICAL ENGINEERING, SABI 2022, 2024, 105 : 447 - 454
  • [45] Effective Utilization of Multiple Convolutional Neural Networks for Chest X-Ray Classification
    Rammuni Silva R.S.
    Fernando P.
    SN Computer Science, 3 (6)
  • [46] Accurate Segmentation of Lung Fields on Chest Radiographs using Deep Convolutional Networks
    Arbabshirani, Mohammad R.
    Dallal, Ahmed H.
    Agarwal, Chirag
    Patel, Aalpen
    Moore, Gregory
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [47] Sound Classification Using Convolutional Neural Networks
    Jaiswal, Kaustumbh
    Patel, Dhairya Kalpeshbhai
    2018 SEVENTH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING IN EMERGING MARKETS (CCEM), 2018, : 81 - 84
  • [48] Melanoma Cancer Classification using Deep Convolutional Neural Networks
    Cadena, Jose M.
    Perez, Noel
    Benitez, Diego
    Grijalva, Felipe
    Flores, Ricardo
    Camacho, Oscar
    Marrero-Ponce, Yovani
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [49] Automatic detection and classification of leukocytes using convolutional neural networks
    Jianwei Zhao
    Minshu Zhang
    Zhenghua Zhou
    Jianjun Chu
    Feilong Cao
    Medical & Biological Engineering & Computing, 2017, 55 : 1287 - 1301
  • [50] A robust modulation classification method using convolutional neural networks
    Siyang Zhou
    Zhendong Yin
    Zhilu Wu
    Yunfei Chen
    Nan Zhao
    Zhutian Yang
    EURASIP Journal on Advances in Signal Processing, 2019