A boundedness criterion for Toeplitz operators in weighted Sobolev spaces of holomorphic functions on the polydisk

被引:0
作者
F. A. Shamoyan
机构
[1] Bryansk State University, Bryansk
基金
俄罗斯基础研究基金会;
关键词
harmonic function; holomorphic function; Sobolev space; Toeplitz operator; unit torus;
D O I
10.1134/S003744661202036X
中图分类号
学科分类号
摘要
We obtain a full description of the summable functions h on the torus which admit pluriharmonic continuation to the unit polydisk for which the Toeplitz operator with symbol h is a bounded operator in the weighted Sobolev spaces of holomorphic functions. © 2012 Pleiades Publishing, Ltd.
引用
收藏
页码:554 / 572
页数:18
相关论文
共 28 条
[1]  
Carleson L., On the zeros of functions with bounded Dirichlet integral, Math. Z., 3, pp. 289-295, (1952)
[2]  
Korenblyum B.I., An extremal property of outer functions, Math. Notes, 10, 1, pp. 456-458, (1971)
[3]  
Korenblyum B.I., Functions holomorphic in a disk and smooth in its closure, Soviet Math., Dokl., 12, 1, pp. 1312-1315, (1971)
[4]  
Khavin V.P., On factorization of analytic functions that are smooth up to a boundary, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 22, pp. 202-205, (1971)
[5]  
Shamoyan F.A., Division by an inner function in some spaces of functions analytic in the disk, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 22, pp. 206-208, (1971)
[6]  
Vinogradov S.A., Shirokov N.A., On the factorization of analytic functions with the derivative in H <sup>p</sup> , Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 22, pp. 8-27, (1971)
[7]  
Shirokov N.A., Analytic Functions Smooth up to the Boundary, (1988)
[8]  
Dyakonov K.M., Division and multiplication by Inner Functions And Embedding theorems for spaces of analytic functions, Amer. J. Math., 115, 4, pp. 881-902, (1983)
[9]  
Shamoyan F.A., Shubabko E.N., -Classes of Meromorphic Functions [in Russian], (2010)
[10]  
Shamoyan F.A., On boundedness of one class of operators connected with divisibility of analytic functions, Izv. Akad. Nauk Armenii Mat., 8, 6, pp. 474-494, (1973)