On Inversion Of Bessel Potentials Associated With The Laplace–Bessel Differential Operator

被引:0
|
作者
I. A. Aliev
S. Uyhan-Bayrakci
机构
[1] Akdeniz University,Department Of Mathematics, Faculty Of Sciences
来源
Acta Mathematica Hungarica | 2002年 / 95卷
关键词
Bessel potentials; generalized translation operator; fractional integral and derivative; Laplace–Bessel differential operator; metaharmonic semigroup;
D O I
暂无
中图分类号
学科分类号
摘要
Explicit inversion formulas of Balakrishnan–Rubin type and a characterization of Bessel potentials associated with the Laplace–Bessel differential operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Delta _B = \sum\limits_{k = 1}^{n - 1} {\frac{{\partial ^2 }}{{\partial x_k^2 }}} + \left( {\frac{{\partial ^2 }}{{\partial x_n^2 }} + \frac{{2\nu }}{{x_n }}\frac{{\partial ^2 }}{{\partial x_n^2 }}} \right){\text{ }}\left( {\nu > 0} \right)$$ \end{document} are obtained. As an auxiliary tool the B-metaharmonic semigroup is introduced and some of its properties are investigated.
引用
收藏
页码:125 / 145
页数:20
相关论文
共 50 条