Explicit inversion formulas of Balakrishnan–Rubin type and a characterization of Bessel potentials associated with the Laplace–Bessel differential operator \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\Delta _B = \sum\limits_{k = 1}^{n - 1} {\frac{{\partial ^2 }}{{\partial x_k^2 }}} + \left( {\frac{{\partial ^2 }}{{\partial x_n^2 }} + \frac{{2\nu }}{{x_n }}\frac{{\partial ^2 }}{{\partial x_n^2 }}} \right){\text{ }}\left( {\nu > 0} \right)$$
\end{document} are obtained. As an auxiliary tool the B-metaharmonic semigroup is introduced and some of its properties are investigated.