Global Zero-Relaxation Limit for a Two-Fluid Euler-Poisson System

被引:0
|
作者
Liu, Cunming [1 ]
Sheng, Han [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Jingxuan Rd, Qufu 273165, Shandong, Peoples R China
关键词
Zero-relaxation limit; Two-fluid Euler-Poisson system; Energy estimates; Global convergence; Convergence rate; HYDRODYNAMIC MODEL; ASYMPTOTIC-BEHAVIOR; SMOOTH SOLUTIONS; SEMICONDUCTORS; CONVERGENCE; MAXWELL; STABILITY;
D O I
10.1007/s00245-024-10131-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the relaxation problem for a two-fluid Euler-Poisson system. We prove the global-in-time convergence of the system for smooth solutions near the constant equilibrium states. The limit system is the two-fluid drift-diffusion system as the relaxation time tends to zero. In the proof, we establish uniform energy estimates of smooth solutions for all the parameters and the time. These estimates allow us to pass to the limit in the system to obtain the limit system. Moreover, the global convergence rate of the solutions is obtained by stream function techniques.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Global error estimates in zero-relaxation limit of Euler-Poisson system for ion dynamics
    Sheng, Han
    Liu, Cunming
    APPLICABLE ANALYSIS, 2024, 103 (08) : 1498 - 1512
  • [2] GLOBAL QUASI-NEUTRAL LIMIT FOR A TWO-FLUID EULER-POISSON SYSTEM IN SEVERAL SPACE DIMENSIONS
    Peng, Yue-Jun
    Liu, Cunming
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (02) : 1405 - 1438
  • [3] Global quasi-neutral limit for a two-fluid Euler-Poisson system in one space dimension
    Peng, Yue-Jun
    Liu, Cunming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 330 : 81 - 109
  • [4] Global zero-relaxation limit of the non-isentropic Euler-Poisson system for ion dynamics
    Feng, Yuehong
    Li, Xin
    Wang, Shu
    ASYMPTOTIC ANALYSIS, 2020, 120 (3-4) : 301 - 318
  • [5] Initial layers and zero-relaxation limits of multidimensional Euler-Poisson equations
    Hajjej, Mohamed-Lasmer
    Peng, Yue-Jun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (02) : 182 - 195
  • [6] From two-fluid Euler-Poisson equations to one-fluid Euler equations
    Li, Yachun
    Peng, Yue-Jun
    Wang, Ya-Guang
    ASYMPTOTIC ANALYSIS, 2013, 85 (3-4) : 125 - 148
  • [7] Convergence rates in zero-relaxation limits for Euler-Maxwell and Euler-Poisson systems
    Li, Yachun
    Peng, Yue-Jun
    Zhao, Liang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 154 : 185 - 211
  • [8] The optimal decay estimates on the framework of Besov spaces for the Euler-Poisson two-fluid system
    Xu, Jiang
    Kawashima, Shuichi
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (10) : 1813 - 1844
  • [9] Quasineutral limit of the two-fluid Euler-Poisson system in a bounded domain of R3
    Ju, Qiangchang
    Li, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (01) : 169 - 187
  • [10] Global convergence of the Euler-Poisson system for ion dynamics
    Liu, Cunming
    Peng, Yue-jun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (04) : 1236 - 1248