G-Prešić operators on metric spaces endowed with a graph and fixed point theorems

被引:0
作者
Satish Shukla
Naseer Shahzad
机构
[1] Shri Vaishnav Institute of Technology and Science,Department of Applied Mathematics
[2] King Abdulaziz University,Department of Mathematics
来源
Fixed Point Theory and Applications | / 2014卷
关键词
graph; fixed point; Prešić type mapping;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to introduce the Prešić type contraction in metric spaces endowed with a graph and to prove some fixed point results for the G-Prešić operators in such spaces. The results proved here generalize, extend, and unify several comparable results in the existing literature. Some examples are included which illustrate the results proved herein.
引用
收藏
相关论文
共 36 条
  • [1] Prešić SB(1965)Sur la convergence des suites C. R. Acad. Sci. Paris 260 3828-3830
  • [2] Prešić SB(1965)Sur une classe d’inéquations aux différences finite et sur la convergence de certaines suites Publ. Inst. Math. (Belgr.) 5 75-78
  • [3] Chen YZ(2009)A Prešić type contractive condition and its applications Nonlinear Anal 71 2012-2017
  • [4] Ćirić LB(2007)On Prešić type generalisation of Banach contraction principle Acta Math. Univ. Comen LXXVI 143-147
  • [5] Prešić SB(2012)A generalization of Banach contraction principle in ordered cone metric spaces J. Adv. Math. Stud 5 59-67
  • [6] Malhotra SK(2010)A multi-step iterative method for approximating common fixed points of Prešić-Rus type operators on metric spaces Stud. Univ. Babeş-Bolyai, Math LV 149-162
  • [7] Shukla S(2009)Approximating common fixed points of Prešić-Kannan type operators by a multi-step iterative method An. Univ. “Ovidius” Constanţa, Ser. Mat 17 153-168
  • [8] Sen R(2012)Common fixed points for almost Prešić type operators Carpath. J. Math 28 117-126
  • [9] Pǎcurar M(2014)Set-valued Prešić-Ćirić type contraction in 0-complete partial metric spaces Mat. Vesn 66 178-189
  • [10] Pǎcurar M(2012)Some fixed point theorems of Prešić-Ćirić type Acta Univ. Apulensis 30 237-249