Design of one-dimensional acoustic metamaterials using machine learning and cell concatenation

被引:0
作者
Rih-Teng Wu
Ting-Wei Liu
Mohammad R. Jahanshahi
Fabio Semperlotti
机构
[1] Purdue University,Lyles School of Civil Engineering
[2] Purdue University,Ray W. Herrick Laboratories, School of Mechanical Engineering
[3] Purdue University,School of Electrical and Computer Engineering (Courtesy)
来源
Structural and Multidisciplinary Optimization | 2021年 / 63卷
关键词
Acoustic metamaterial; Phononic crystal; Machine learning; Reinforcement learning; Neural network;
D O I
暂无
中图分类号
学科分类号
摘要
Metamaterial systems have opened new, unexpected, and exciting paths for the design of acoustic devices that only few years ago were considered completely out of reach. However, the development of an efficient design methodology still remains challenging due to highly intensive search in the design space required by the conventional optimization-based approaches. To address this issue, this study develops two machine learning (ML)-based approaches for the design of one-dimensional periodic and non-periodic metamaterial systems. For periodic metamaterials, a reinforcement learning (RL)-based approach is proposed to design a metamaterial that can achieve user-defined frequency band gaps. This RL-based approach surpasses conventional optimization-based methods in the reduction of computation cost when a near-optimal solution is acceptable. Leveraging the capability of exploration in RL, the proposed approach does not require any training datasets generation and therefore can be deployed for online metamaterial design. For non-periodic metamaterials, a neural network (NN)-based approach capable of learning the behavior of individual material units is presented. By assembling the NN representation of individual material units, a surrogate model of the whole metamaterial is employed to determine the properties of the resulting assembly. Interestingly, the proposed approach is capable of modeling different metamaterial assemblies satisfying user-defined properties while requiring only a one-time network training procedure. Also, the NN-based approach does not need a pre-defined number of material unit cells, and it works when the physical model of the unit cell is not well understood, or the situation where only the sensor measurements of the unit cell are available. The robustness of the proposed two approaches is validated through numerical simulations and design examples.
引用
收藏
页码:2399 / 2423
页数:24
相关论文
共 235 条
[21]  
Quintanilla R(2007)Optimal synthesis of 2d phononic crystals for broadband frequency isolation Waves Random Complex Media 17 491-6334
[22]  
Cummer SA(2001)Comparative studies of metamodelling techniques under multiple modelling criteria Struct Multidiscip Optim 23 1-360
[23]  
Schurig D(1998)Gradient-based learning applied to document recognition Proc IEEE 86 2278-676
[24]  
Dong HW(2019)Machine learning-driven real-time topology optimization under moving morphable component-based framework J Appl Mech 86 011004-676
[25]  
Su XX(2012)Design of an acoustic metamaterial lens using genetic algorithms J Acoust Soc Am 132 2823-4416
[26]  
Wang YS(2020)Designing phononic crystal with anticipated band gap through a deep learning based data-driven method Comput Methods Appl Mech Eng 361 737-1040
[27]  
Zhang C(2009)Gradient-index phononic crystals Phys Rev B 79 094302-696
[28]  
Dong HW(2019)Experimental evidence of robust acoustic valley hall edge states in a nonresonant topological elastic waveguide Phys Rev Appl 014 040-1209
[29]  
Zhao SD(2008)Optimum structure with homogeneous optimum truss-like material Comput Struct 86 1417-121
[30]  
Wang YS(2014)Evidence of a love wave bandgap in a quartz substrate coated with a phononic thin layer Appl Phys Lett 181 905-1019