Magnetic resonance imaging: Advanced applications in breast cancer

被引:0
作者
Rahbar H. [1 ]
Kitsch A.E. [1 ]
Partridge S.C. [1 ]
机构
[1] Breast Imaging Section, Department of Radiology, Seattle Cancer Care Alliance, University of Washington, 825 Eastlake Avenue East, P.O. Box 19023, Seattle, 98109–1023, WA
基金
美国国家卫生研究院;
关键词
Breast cancer; Diffusion-weighted imaging; Dynamic contrast-enhanced PK modeling; Magnetic resonance spectroscopy; Multiparametric breast MRI;
D O I
10.1007/s40134-016-0142-3
中图分类号
学科分类号
摘要
Breast MRI is a highly sensitive imaging tool for breast cancer detection. In general clinical practice, breast MRI utilizes a limited dynamic contrast-enhanced (DCE) acquisition that provides morphologic and semiquantitative kinetic information to allow characterization of breast findings. This approach provides sensitivities approaching 100% for breast cancer detection; however, its specificity remains moderate due to limited ability to differentiate benign pathologic processes that enhance from malignancies. Several advanced MRI techniques, such as high-temporal resolution DCE that allows robust quantitative pharmacokinetic analysis, diffusion-weighted imaging that allows microstructural characterization, and MR spectroscopy that reflects chemical composition, hold promise to improve standard breast MRI specificity and to serve as imaging biomarkers that can guide treatment decisions. In this review article, we review recent updates in advanced breast MRI applications, including their potential clinical uses and challenges to implementation. © Springer Science+Business Media New York 2016.
引用
收藏
相关论文
共 101 条
[21]  
Veltman J., Stoutjesdijk M., Mann R., Huisman H.J., Barentsz J.O., Blickman J.G., Et al., Contrast-enhanced magnetic resonance imaging of the breast: The value of pharmacokinetic parameters derived from fast dynamic imaging during initial enhancement in classifying lesions, Eur Radiol, 18, 6, pp. 1123-1133, (2008)
[22]  
Wang T.C., Huang Y.H., Huang C.S., Chen J.H., Huang G.Y., Chang Y.C., Et al., Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis, Magn Reson Imaging, 32, 3, pp. 197-205, (2014)
[23]  
Mahrooghy M., Ashraf A.B., Daye D., McDonald E.S., Rosen M., Mies C., Et al., Pharmacokinetic tumor heterogeneity as a prognostic biomarker for classifying breast cancer recurrence risk, IEEE Trans Bio-Med Eng, 62, 6, pp. 1585-1594, (2015)
[24]  
Marinovich M.L., Sardanelli F., Ciatto S., Mamounas E., Brennan M., Macaskill P., Et al., Early prediction of pathologic response to neoadjuvant therapy in breast cancer: Systematic review of the accuracy of MRI, Breast, 21, 5, pp. 669-677, (2012)
[25]  
Drisis S., Metens T., Ignatiadis M., Stathopoulos K., Chao S.L., Lemort M., Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: The impact of breast cancer subtypes on the diagnostic accuracy, Eur Radiol, (2015)
[26]  
Li K.L., Partridge S.C., Joe B.N., Gibbs J.E., Lu Y., Esserman L.J., Et al., Invasive breast cancer: Predicting disease recurrence by using high-spatial-resolution signal enhancement ratio imaging, Radiology, 248, 1, pp. 79-87, (2008)
[27]  
Li X., Arlinghaus L.R., Ayers G.D., Chakravarthy A.B., Abramson R.G., Abramson V.G., Et al., DCE-MRI analysis methods for predicting the response of breast cancer to neoadjuvant chemotherapy: Pilot study findings, Magn Reson Med, 71, 4, pp. 1592-1602, (2014)
[28]  
Cho N., Im S.A., Park I.A., Lee K.H., Li M., Han W., Et al., Breast cancer: Early prediction of response to neoadjuvant chemotherapy using parametric response maps for MR imaging, Radiology, 272, 2, pp. 385-396, (2014)
[29]  
Huang W., Li X., Chen Y., Li X., Chang M.C., Oborski M.J., Et al., Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: A multicenter data analysis challenge, Transl Oncol, 7, 1, pp. 153-166, (2014)
[30]  
Tofts P.S., Brix G., Buckley D.L., Evelhoch J.L., Henderson E., Knopp M.V., Et al., Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: Standardized quantities and symbols, J Magn Reson Imaging, 10, 3, pp. 223-232, (1999)