Boundary element methods for variational inequalities

被引:0
作者
O. Steinbach
机构
[1] TU Graz,Institut für Numerische Mathematik
来源
Numerische Mathematik | 2014年 / 126卷
关键词
35J85; 65N38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a priori error estimates for the Galerkin solution of variational inequalities which are formulated in fractional Sobolev trace spaces, i.e. in H˜1/2(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{H}^{1/2}(\Gamma )$$\end{document}. In addition to error estimates in the energy norm we also provide, by applying the Aubin–Nitsche trick for variational inequalities, error estimates in lower order Sobolev spaces including L2(Γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2(\Gamma )$$\end{document}. The resulting discrete variational inequality is solved by using a semi-smooth Newton method, which is equivalent to an active set strategy. A numerical example is given which confirms the theoretical results.
引用
收藏
页码:173 / 197
页数:24
相关论文
共 44 条
  • [1] Brezis H(1972)Problémes unilateraux J. Math. Pures Appl. 51 1-168
  • [2] Brezzi F(1977)Error estimates for the finite element solution of variational inequalities Numer. Math. 28 431-443
  • [3] Hager WW(1997)FEM and BEM coupling for a nonlinear transmission problem with Signorini contact SIAM J. Numer. Anal. 34 1845-1864
  • [4] Raviart PA(2001)Smoothing methods and semismooth methods for nondifferentiable operator equations SIAM J. Numer. Anal. 38 1200-1216
  • [5] Carstensen C(1975)Approximation by finite element functions using local regularization RAIRO Anal. Numer. R–2 77-84
  • [6] Gwinner J(1988)Boundary integral operators on Lipschitz domains: elementary results SIAM J. Math. Anal. 19 613-626
  • [7] Chen X(1999)A symmetric boundary element method for contact problems with friction Math. Comput. Simul. 50 43-61
  • [8] Nashed Z(1974)Error estimates for the approximation of a class of variational inequalities Math. Comput. 28 963-971
  • [9] Qi L(1993)A boundary element procedure for contact problems in plane linear elastostatics RAIRO Model. Math. Anal. Numer. 27 457-480
  • [10] Clement P(1990)A direct boundary element method for Signorini problems Math. Comp. 55 115-128